AutoML for Explainable Anomaly Detection (XAD)

Authors Nikolaos Myrtakis , Ioannis Tsamardinos , Vassilis Christophides



PDF
Thumbnail PDF

File

OASIcs.Tannen.8.pdf
  • Filesize: 2.6 MB
  • 23 pages

Document Identifiers

Author Details

Nikolaos Myrtakis
  • Department of Computer Science, University of Crete, Heraklion, Greece
  • ETIS Laboratory, CY Cergy Paris Université, ENSEA, France
Ioannis Tsamardinos
  • Department of Computer Science, University of Crete, Heraklion, Greece
Vassilis Christophides
  • ETIS Laboratory, CY Cergy Paris Université, ENSEA, France

Cite AsGet BibTex

Nikolaos Myrtakis, Ioannis Tsamardinos, and Vassilis Christophides. AutoML for Explainable Anomaly Detection (XAD). In The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen. Open Access Series in Informatics (OASIcs), Volume 119, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/OASIcs.Tannen.8

Abstract

Numerous algorithms have been proposed for detecting anomalies (outliers, novelties) in an unsupervised manner. Unfortunately, it is not trivial, in general, to understand why a given sample (record) is labelled as an anomaly and thus diagnose its root causes. We propose the following reduced-dimensionality, surrogate model approach to explain detector decisions: approximate the detection model with another one that employs only a small subset of features. Subsequently, samples can be visualized in this low-dimensionality space for human understanding. To this end, we develop PROTEUS, an AutoML pipeline to produce the surrogate model, specifically designed for feature selection on imbalanced datasets. The PROTEUS surrogate model can not only explain the training data, but also the out-of-sample (unseen) data. In other words, PROTEUS produces predictive explanations by approximating the decision surface of an unsupervised detector. PROTEUS is designed to return an accurate estimate of out-of-sample predictive performance to serve as a metric of the quality of the approximation. Computational experiments confirm the efficacy of PROTEUS to produce predictive explanations for different families of detectors and to reliably estimate their predictive performance in unseen data. Unlike several ad-hoc feature importance methods, PROTEUS is robust to high-dimensional data.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Anomaly detection
Keywords
  • Anomaly Explanation
  • Predictive Explanation
  • Anomaly Interpretation
  • Explainable AI

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. F. Angiulli, Fabio Fassetti, L. Palopoli, and G. Manco. Outlying property detection with numerical attributes. Data Mining and Knowledge Discovery, 31:134-163, 2016. Google Scholar
  2. Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Detecting outlying properties of exceptional objects. ACM Trans. Database Syst., 34(1):7:1-7:62, 2009. Google Scholar
  3. Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Discovering characterizations of the behavior of anomalous subpopulations. IEEE Trans. Knowl. Data Eng., 25(6):1280-1292, 2013. Google Scholar
  4. David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-Robert Müller. How to explain individual classification decisions. J. Mach. Learn. Res., 11:1803-1831, 2010. Google Scholar
  5. Aline Bessa, Juliana Freire, Tamraparni Dasu, and Divesh Srivastava. Effective discovery of meaningful outlier relationships. ACM/IMS Trans. Data Sci., 2020. Google Scholar
  6. Klemens Böhm, Fabian Keller, Emmanuel Müller, Hoang Vu Nguyen, and Jilles Vreeken. CMI: an information-theoretic contrast measure for enhancing subspace cluster and outlier detection. In Proceedings of the 13th International Conference on Data Mining, pages 198-206, 2013. Google Scholar
  7. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof: identifying density-based local outliers. In SIGMOD '00, 2000. Google Scholar
  8. Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. Campello, Barbora Micenková, Erich Schubert, Ira Assent, and Michael E. Houle. On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Min. Knowl. Discov., 30:891-927, 2016. Google Scholar
  9. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321-357, 2002. Google Scholar
  10. Xuan-Hong Dang, Ira Assent, Raymond T. Ng, Arthur Zimek, and Erich Schubert. Discriminative features for identifying and interpreting outliers. In ICDE, pages 88-99, 2014. Google Scholar
  11. Xuan-Hong Dang, Barbora Micenková, Ira Assent, and Raymond T. Ng. Local outlier detection with interpretation. In ECML PKDD, pages 304-320, 2013. Google Scholar
  12. Manuel Fernández Delgado, Eva Cernadas, Senén Barro, and Dinani Gomes Amorim. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res., 15(1):3133-3181, 2014. URL: https://doi.org/10.5555/2627435.2697065.
  13. Remi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane Zouaoui. A comparative evaluation of outlier detection algorithms: Experiments and analyses. Pattern Recognition, 74:406-421, 2018. Google Scholar
  14. Lei Duan, Guanting Tang, Jian Pei, James Bailey, Akiko Campbell, and Changjie Tang. Mining outlying aspects on numeric data. Data Mining and Knowledge Discovery, 29:1116-1151, 2014. Google Scholar
  15. Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In IEEE International Conference on Computer Vision, ICCV, pages 3449-3457, 2017. Google Scholar
  16. Ioana Giurgiu and Anika Schumann. Additive explanations for anomalies detected from multivariate temporal data. In CIKM, pages 2245-2248, 2019. Google Scholar
  17. Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One, 2016. Google Scholar
  18. Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. Statistical analysis of nearest neighbor methods for anomaly detection. In NeurIPS, pages 10921-10931, 2019. Google Scholar
  19. Nikhil Gupta, Dhivya Eswaran, Neil Shah, Leman Akoglu, and Christos Faloutsos. Beyond outlier detection: Lookout for pictorial explanation. In ECML/PKDD, 2018. Google Scholar
  20. Hui Han, Wenyuan Wang, and Binghuan Mao. Borderline-smote: A new over-sampling method in imbalanced data sets learning. In ICIC, 2005. Google Scholar
  21. Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach for imbalanced learning. IEEE International Joint Conference on Neural Networks, pages 1322-1328, 2008. Google Scholar
  22. Haibo He and Edwardo A. Garcia. Learning from imbalanced data. TKDE, 21:1263-1284, 2009. Google Scholar
  23. Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning: Methods, Systems, Challenges. Springer, 2018. Google Scholar
  24. David D. Jensen and Paul R. Cohen. Multiple comparisons in induction algorithms. do. Learn., 38(3):309-338, 2000. Google Scholar
  25. Fabian Keller, Emmanuel Müller, and Klemens Böhm. Hics: High contrast subspaces for density-based outlier ranking. In ICDE, pages 1037-1048, 2012. Google Scholar
  26. Fabian Keller, Emmanuel Müller, Andreas Wixler, and Klemens Böhm. Flexible and adaptive subspace search for outlier analysis. In CIKM, pages 1381-1390, 2013. Google Scholar
  27. Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of distance-based outliers. In VLDB, pages 211-222, 1999. Google Scholar
  28. Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In ICML, volume 70, pages 1885-1894, 2017. Google Scholar
  29. Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In PAKDD, volume 5476, pages 831-838, 2009. Google Scholar
  30. Chia-Tung Kuo and Ian Davidson. A framework for outlier description using constraint programming. In AAAI, pages 1237-1243, 2016. Google Scholar
  31. Vincenzo Lagani, Giorgos Athineou, Alessio Farcomeni, Michail Tsagris, Ioannis Tsamardinos, et al. Feature selection with the r package mxm: Discovering statistically equivalent feature subsets. Journal of Statistical Software, 2017. Google Scholar
  32. Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM, 2008. URL: https://doi.org/10.1109/ICDM.2008.17.
  33. Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M Prutkin, Bala G. Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding with explainable ai for trees. Nature Machine Intelligence, 2:56-67, 2020. Google Scholar
  34. Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NeurIPS, pages 4765-4774, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
  35. L. V. D. Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9:2579-2605, 2008. Google Scholar
  36. Meghanath Macha and Leman Akoglu. Explaining anomalies in groups with characterizing subspace rules. Data Min. Knowl. Discov., 32(5):1444-1480, 2018. Google Scholar
  37. Emaad A. Manzoor, Hemank Lamba, and Leman Akoglu. xstream: Outlier detection in feature-evolving data streams. In Yike Guo and Faisal Farooq, editors, KDD, pages 1963-1972, 2018. URL: https://doi.org/10.1145/3219819.3220107.
  38. Barbora Micenková, Raymond T. Ng, Xuan-Hong Dang, and Ira Assent. Explaining outliers by subspace separability. In ICDM, pages 518-527, 2013. Google Scholar
  39. Christoph Molnar. Interpretable Machine Learning. independently published, 2019. URL: https://christophm.github.io/interpretable-ml-book/.
  40. Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and understanding deep neural networks. Digit. Signal Process., 73:1-15, 2018. Google Scholar
  41. Nikolaos Myrtakis, Ioannis Tsamardinos, and Vassilis Christophides. Proteus: Predictive explanation of anomalies. ICDE, 2021. Google Scholar
  42. Hien M. Nguyen, Eric W. Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data Paradigms, 3:4-21, 2011. Google Scholar
  43. Xuan Vinh Nguyen, Jeffrey Chan, James Bailey, Christopher Leckie, Kotagiri Ramamohanarao, and Jian Pei. Scalable outlying-inlying aspects discovery via feature ranking. In PAKDD, pages 422-434, 2015. Google Scholar
  44. Tomás Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102:275-304, 2015. Google Scholar
  45. Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In KDD, 2016. Google Scholar
  46. Marko Robnik-Sikonja and Igor Kononenko. Explaining classifications for individual instances. IEEE Transactions on Knowledge and Data Engineering, 20:589-600, 2008. Google Scholar
  47. Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich, and Weng-Keen Wong. Sequential feature explanations for anomaly detection. ACM Trans. Knowl. Discov. Data, 13(1):1:1-1:22, 2019. Google Scholar
  48. Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res., 11:1-18, 2010. Google Scholar
  49. Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst., 41(3):647-665, 2014. Google Scholar
  50. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), pages 267-288, 1996. Google Scholar
  51. Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan E. Hines, C. Bayan Bruss, and Reza Farivar. Towards automated machine learning: Evaluation and comparison of automl approaches and tools. In 31st IEEE International Conference on Tools with Artificial Intelligence, pages 1471-1479, 2019. Google Scholar
  52. Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios Pratikakis, and Vassilis Christophides. A greedy feature selection algorithm for big data of high dimensionality. Mach. Learn., 108(2):149-202, 2019. Google Scholar
  53. Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis. Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Mach. Learn., 107(12):1895-1922, 2018. URL: https://doi.org/10.1007/S10994-018-5714-4.
  54. Adam White and Artur S. d'Avila Garcez. Measurable counterfactual local explanations for any classifier. In European Conference on Artificial Intelligence, ECAI, volume 325, pages 2529-2535, 2020. URL: https://doi.org/10.3233/FAIA200387.
  55. Jiawei Yang, Susanto Rahardja, and Pasi Fränti. Outlier detection: how to threshold outlier scores? In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, AIIPCC 2019, pages 37:1-37:6, 2019. URL: https://doi.org/10.1145/3371425.3371427.
  56. Haopeng Zhang, Yanlei Diao, and Alexandra Meliou. Exstream: Explaining anomalies in event stream monitoring. In EDBT, pages 156-167, 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail