Mitigating Software-Instrumentation Cache Effects in Measurement-Based Timing Analysis

Authors Enrique Díaz, Jaume Abella, Enrico Mezzetti, Irune Agirre, Mikel Azkarate-Askasua, Tullio Vardanega, Francisco J. Cazorla



PDF
Thumbnail PDF

File

OASIcs.WCET.2016.1.pdf
  • Filesize: 0.67 MB
  • 11 pages

Document Identifiers

Author Details

Enrique Díaz
Jaume Abella
Enrico Mezzetti
Irune Agirre
Mikel Azkarate-Askasua
Tullio Vardanega
Francisco J. Cazorla

Cite AsGet BibTex

Enrique Díaz, Jaume Abella, Enrico Mezzetti, Irune Agirre, Mikel Azkarate-Askasua, Tullio Vardanega, and Francisco J. Cazorla. Mitigating Software-Instrumentation Cache Effects in Measurement-Based Timing Analysis. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Open Access Series in Informatics (OASIcs), Volume 55, pp. 1:1-1:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/OASIcs.WCET.2016.1

Abstract

Measurement-based timing analysis (MBTA) is often used to determine the timing behaviour of software programs embedded in safety-aware real-time systems deployed in various industrial domains including automotive and railway. MBTA methods rely on some form of instrumentation, either at hardware or software level, of the target program or fragments thereof to collect execution-time measurement data. A known drawback of software-level instrumentation is that instrumentation itself does affect the timing and functional behaviour of a program, resulting in the so-called probe effect: leaving the instrumentation code in the final executable can negatively affect average performance and could not be even admissible under stringent industrial qualification and certification standards; removing it before operation jeopardizes the results of timing analysis as the WCET estimates on the instrumented version of the program cannot be valid any more due, for example, to the timing effects incurred by different cache alignments. In this paper, we present a novel approach to mitigate the impact of instrumentation code on cache behaviour by reducing the instrumentation overhead while at the same time preserving and consolidating the results of timing analysis.
Keywords
  • WCET
  • Measurements
  • Instrumentation overhead

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Adam Betts, Nicholas Merriam, and Guillem Bernat. Hybrid measurement-based WCET analysis at the source level using object-level traces. In 10th International Workshop on Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages 54-63, 2010. URL: http://dx.doi.org/10.4230/OASIcs.WCET.2010.54.
  2. Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Code Lo, Tullio Vardanega, Leonidas Kosmidis, Jaume Abella, Enrico Mezzetti, Eduardo Quiñones, and Francisco J. Cazorla. Measurement-based probabilistic timing analysis for multi-path programs. In 24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa, Italy, July 11-13, 2012, pages 91-101, 2012. URL: http://dx.doi.org/10.1109/ECRTS.2012.31.
  3. Boris Dreyer, Christian Hochberger, Simon Wegener, and Alexander Weiss. Precise continuous non-intrusive measurement-based execution time estimation. In 15th International Workshop on Worst-Case Execution Time Analysis, WCET 2015, July 7, 2015, Lund, Sweden, pages 45-54, 2015. URL: http://dx.doi.org/10.4230/OASIcs.WCET.2015.45.
  4. ERA (European Railway Agency). ERTMS - Set of specifications - 2 (ETCS baseline 3 and GSM-R baseline 0), 2014. URL: http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-2.aspx.
  5. Raimund Kirner, Peter Puschner, and Ingomar Wenzel. Measurement-based worst-case execution time analysis using automatic test-data generation. In 4th International Workshop on Worst-Case Execution Time Analysis, WCET 2004, Catania, Sicily, Italy, June 29, 2004, pages 67-70, 2004. URL: https://www.irisa.fr/manifestations/2004/wcet2004/.
  6. Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla. A cache design for probabilistically analysable real-time systems. In Design, Automation and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 513-518, 2013. URL: http://dx.doi.org/10.7873/DATE.2013.116.
  7. Leonidas Kosmidis, Jaume Abella, Franck Wartel, Eduardo Quiñones, Antoine Colin, and Francisco J. Cazorla. PUB: path upper-bounding for measurement-based probabilistic timing analysis. In 26th Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014, pages 276-287, 2014. URL: http://dx.doi.org/10.1109/ECRTS.2014.34.
  8. Leonidas Kosmidis, Eduardo Quiñones, Jaume Abella, Tullio Vardanega, Ian Broster, and Francisco J. Cazorla. Measurement-based probabilistic timing analysis and its impact on processor architecture. In 17th Euromicro Conference on Digital System Design, DSD 2014, Verona, Italy, August 27-29, 2014, pages 401-410, 2014. URL: http://dx.doi.org/10.1109/DSD.2014.50.
  9. Samuel Kotz and Saralees Nadarajah. Extreme Value Distributions: Theory and Applications. World Scientific, 2000. ISBN 978-1-86094-224-2. Google Scholar
  10. Stefan M. Petters. Comparison of trace generation methods for measurement based WCET analysis. In Proceedings of the 3rd International Workshop on Worst-Case Execution Time Analysis, WCET 2003 - a Satellite Event to ECRTS 2003, Polytechnic Institute of Porto, Portugal, July 1, 2003, pages 75-78, 2003. Google Scholar
  11. Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A benchmark characterization of the EEMBC benchmark suite. IEEE Micro, 29(5):18-29, 2009. URL: http://dx.doi.org/10.1109/MM.2009.74.
  12. Bernhard Rieder, Ingomar Wenzel, Klaus Steinhammer, and Peter P. Puschner. Using a runtime measurement device with measurement-based WCET analysis. In Embedded System Design: Topics, Techniques and Trends, IFIP TC10 Working Conference: International Embedded Systems Symposium (IESS), May 30 - June 1, 2007, Irvine, CA, USA, pages 15-26, 2007. URL: http://dx.doi.org/10.1007/978-0-387-72258-0_2.
  13. Stefan Stattelmann and Florian Martin. On the use of context information for precise measurement-based execution time estimation. In 10th International Workshop on Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages 64-76, 2010. URL: http://dx.doi.org/10.4230/OASIcs.WCET.2010.64.
  14. https://www.rapitasystems.com/products/rtbx. RTBx. Rapita Systems. URL: https://www.rapitasystems.com/products/rtbx.
  15. http://www.gaisler.com/index.php/products/debug-tools/grmon. Cobham Gaisler. GRMON. URL: http://www.gaisler.com/index.php/products/debug-tools/grmon.
  16. Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter P. Puschner. Measurement-based worst-case execution time analysis. In Third IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, SEUS 2005, Seattle, WA, USA, May 16-17, 2005, pages 7-10, 2005. URL: http://dx.doi.org/10.1109/SEUS.2005.12.
  17. Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter P. Puschner. Measurement-based timing analysis. In Leveraging Applications of Formal Methods, Verification and Validation, Third International Symposium, ISoLA 2008, Porto Sani, Greece, October 13-15, 2008. Proceedings, pages 430-444, 2008. URL: http://dx.doi.org/10.1007/978-3-540-88479-8_30.
  18. Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter P. Puschner. Automatic timing model generation by CFG partitioning and model checking. In 2005 Design, Automation and Test in Europe Conference and Exposition (DATE 2005), 7-11 March 2005, Munich, Germany, pages 606-611, 2005. URL: http://dx.doi.org/10.1109/DATE.2005.76.
  19. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008. URL: http://dx.doi.org/10.1145/1347375.1347389.