OASIcs.WPTE.2014.51.pdf
- Filesize: 0.52 MB
- 12 pages
We consider reduction in the synchronous pi-calculus with replication, without sums. Usual definitions of reduction in the pi-calculus use a closure w.r.t. structural congruence of processes. In this paper we operationalize structural congruence by providing a reduction relation for pi-processes which also performs necessary structural conversions explicitly by rewrite rules. As we show, a subset of structural congruence axioms is sufficient. We show that our rewrite strategy is equivalent to the usual strategy including structural congruence w.r.t.the observation of barbs and thus w.r.t. may- and should-testing equivalence in the pi-calculus.
Feedback for Dagstuhl Publishing