Physical Modeling of Process-Machine-Interactions in Micro Machining

Authors Andreas Lange, Benjamin Kirsch, Marius Heintz, Jan C. Aurich



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.2.pdf
  • Filesize: 10.15 MB
  • 20 pages

Document Identifiers

Author Details

Andreas Lange
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Benjamin Kirsch
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Marius Heintz
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany

Cite AsGet BibTex

Andreas Lange, Benjamin Kirsch, Marius Heintz, and Jan C. Aurich. Physical Modeling of Process-Machine-Interactions in Micro Machining. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/OASIcs.iPMVM.2020.2

Abstract

Increasing demands for smaller and smarter devices in a variety of applications requires the investigation of process-machine-interactions in micro manufacturing to ensure process results that guarantee part functionality. One approach is the use of simulation-based physical models. In this contribution, methods for the physical modeling of high-precision air bearing and magnetic bearing spindles are presented in addition to a kinematic model of the micro milling process. Both models are superimposed in order to carry out investigations of the slot bottom surface roughness in micro end milling. The results show that process-machine-interactions in micro manufacturing can be modeled by the superposition of a physical model of the machine tool spindle taking cutting forces into consideration and a purely kinematic model of the machining process, providing the necessary tools for a variety of further investigations into process-machine-interactions in micro manufacturing.

Subject Classification

ACM Subject Classification
  • Applied computing → Physical sciences and engineering
Keywords
  • multiphysics
  • air bearing
  • magnetic bearing
  • surface roughness modeling
  • micro milling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Shukri M. Afazov, Svetan M. Ratchev, Joel Segal, and Atanas A. Popov. Chatter modelling in micro-milling by considering process nonlinearities. International Journal of Machine Tools and Manufacture, 56:28-38, 2012. URL: https://doi.org/10.1016/j.ijmachtools.2011.12.010.
  2. Ravi S. Anand and Karali Patra. Modeling and simulation of mechanical micro-machining—a review. Machining Science and Technology, 18(3):323-347, 2014. URL: https://doi.org/10.1080/10910344.2014.925377.
  3. Jan C. Aurich, Martin Bohley, Ingo G. Reichenbach, and Benjamin Kirsch. Surface quality in micro milling: Influences of spindle and cutting parameters. CIRP Annals, 66(1):101-104, 2017. URL: https://doi.org/10.1016/j.cirp.2017.04.029.
  4. Jan C. Aurich, Marina Carrella, and Michael Walk. Micro grinding with ultra small micro pencil grinding tools using an integrated machine tool. CIRP Annals, 64(1):325-328, 2015. URL: https://doi.org/10.1016/j.cirp.2015.04.011.
  5. George K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, 2000. URL: https://doi.org/10.1017/CBO9780511800955.
  6. Richard Bellman. Perturbation techniques in mathematics, physics and engineering (holt, rinehart and winston, london, 1964), 118 pp., 30s. Proceedings of the Edinburgh Mathematical Society, 14(4), 1965. URL: https://doi.org/10.1017/S0013091500009068.
  7. Christian Brecher, Martin Esser, and Stephan Witt. Interaction of manufacturing process and machine tool. CIRP Annals, 58(2):588-607, 2009. URL: https://doi.org/10.1016/j.cirp.2009.09.005.
  8. Berend Denkena and Ferdinand Hollmann. Process Machine Interactions. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-32448-2.
  9. Mohamed E. Eleshaky. Cfd investigation of pressure depressions in aerostatic circular thrust bearings. Tribology International, 42(7):1108-1117, 2009. URL: https://doi.org/10.1016/j.triboint.2009.03.011.
  10. Michael I. Friswell, John E. T. Penny, Seamus D. Garvey, and Arthur W. Lees. Dynamics of Rotating Machines. Cambridge Aerospace Series. Cambridge University Press, 2010. URL: https://doi.org/10.1017/CBO9780511780509.
  11. Qiang Gao, Wanqun Chen, Lihua Lu, Dehong Huo, and Kai Cheng. Aerostatic bearings design and analysis with the application to precision engineering: State-of-the-art and future perspectives. Tribology International, 135:1-17, 2019. URL: https://doi.org/10.1016/j.triboint.2019.02.020.
  12. Siyu Gao, Kai Cheng, Hui Ding, and Hongya Fu. Multiphysics-based design and analysis of the high-speed aerostatic spindle with application to micro-milling. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230(7):852-871, 2016. URL: https://doi.org/10.1177/1350650115619609.
  13. Ichiro Inasaki, Bernhard Karpuschewski, and Hwasoo Lee. Grinding chatter-origin and suppression. CIRP Annals, 50(2):515-534, 2001. URL: https://doi.org/10.1016/S0007-8506(07)62992-8.
  14. John D. Jackson. Classical electrodynamics. John Wiley & Sons, 3rd edition, 1999. Google Scholar
  15. Martin B. G. Jun, Xinyu Liu, Richard E. DeVor, and Shiv G. Kapoor. Investigation of the dynamics of microend milling—part i: model development. Journal of Manufacturing Science and Engineering, 128(4):893-900, 2006. URL: https://doi.org/10.1115/1.2193546.
  16. Sonja Kieren-Ehses, Martin Bohley, Tobias Mayer, Benjamin Kirsch, and Jan C. Aurich. Effect of high spindle speeds on micro end milling of commercially pure titanium. Proceedings of the 20th euspen International Conference, pages 61-62, 2020. Google Scholar
  17. Eric H. Maslen and Gerhard Schweitzer. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer-Verlag Berlin Heidelberg, 2009. URL: https://doi.org/10.1007/978-3-642-00497-1.
  18. Christopher Müller, Sebastian Greco, Benjamin Kirsch, and Jan C. Aurich. A finite element analysis of air bearings applied in compact air bearing spindles. Procedia CIRP - 16th CIRP Conference on Modelling of Machining Operations, 58:607-612, 2017. URL: https://doi.org/10.1016/j.procir.2017.03.337.
  19. Christopher Müller, Benjamin Kirsch, and Jan C. Aurich. Compact air bearing spindles for desktop sized machine tools. Small Machine Tools for Small Workpieces, 55:21-34, 2017. URL: https://doi.org/10.1007/978-3-319-49269-8_2.
  20. Tej Pratap, Karali Patra, and Alexander A. Dyakonov. Modeling cutting force in micro-milling of ti-6al-4 v titanium alloy. Procedia Engineering, 129:134-139, 2015. URL: https://doi.org/10.1016/j.proeng.2015.12.021.
  21. Ingo G. Reichenbach. Beitrag zur Beherrschung der Mikrofräsbearbeitung von Polymethylmethacrylat. Dissertation, Technische Universität Kaiserslautern, 2017. Google Scholar
  22. Pablo Rodríguez and Julio E. Labarga. A new model for the prediction of cutting forces in micro-end-milling operations. Journal of Materials Processing Technology, 213(2):261-268, 2013. URL: https://doi.org/10.1016/j.jmatprotec.2012.09.009.
  23. Dinesh Setti, Peter A Arrabiyeh, Benjamin Kirsch, Marius Heintz, and Jan C Aurich. Analytical and experimental investigations on the mechanisms of surface generation in micro grinding. International Journal of Machine Tools and Manufacture, 149:103489, 2020. URL: https://doi.org/10.1016/j.ijmachtools.2019.103489.
  24. Andras Z. Szeri. Fluid film lubrication. Cambridge university press, 2010. URL: https://doi.org/10.1017/CBO9780511782022.
  25. Thanongsak Thepsonthi and Tuğrul Özel. 3-d finite element process simulation of micro-end milling ti-6al-4v titanium alloy: experimental validations on chip flow and tool wear. Journal of Materials Processing Technology, 221:128-145, 2015. URL: https://doi.org/10.1016/j.jmatprotec.2015.02.019.
  26. Eckart Uhlmann, F Mahr, Y Shi, and U von Wagner. Process machine interactions in micro milling. In Process Machine Interactions, pages 265-284. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-32448-2_12.
  27. Frank Vollertsen, Dirk Biermann, Hans N. Hansen, I. S. Jawahir, and Karl Kuzman. Size effects in manufacturing of metallic components. CIRP Annals, 58(2):566-587, 2009. URL: https://doi.org/10.1016/j.cirp.2009.09.002.
  28. Frank Wardle. Ultra precision bearings. Woodhead Publishing, Cambridge, 2015. Google Scholar
  29. Tobias Waumans. On the design of high-speed miniature air bearings: Dynamic stability, optimisation and experimental validation. Dissertation, Katholike Universiteit Leuven, 2009. Google Scholar
  30. David C. Wilcox. Turbulence modeling for CFD, volume 2. DCW industries La Canada, CA, 1998. Google Scholar
  31. Jens P. Wulfsberg and Adam Sanders. Small Machine Tools for Small Workpieces: Final Report of the DFG Priority Program 1476. Lecture Notes in Production Engineering. Springer International Publishing, 2017. URL: https://doi.org/10.1007/978-3-319-49269-8.
  32. He Chun Yu, Wen Qi Ma, Zu Wen Wang, and Li Fang Xu. Cfd research on aerostatic bearing with tangential supply holes. Advanced Materials Research, 97:2021-2026, 2010. URL: https://doi.org/10.4028/www.scientific.net/AMR.97-101.2021.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail