Simulation and Application of a Piezo-Driven System Enabling Vibration-Assisted Micro Milling

Authors Sebastian Greco, Katja Klauer, Benjamin Kirsch, Jan C. Aurich



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.3.pdf
  • Filesize: 7.49 MB
  • 18 pages

Document Identifiers

Author Details

Sebastian Greco
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Katja Klauer
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Benjamin Kirsch
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany

Cite AsGet BibTex

Sebastian Greco, Katja Klauer, Benjamin Kirsch, and Jan C. Aurich. Simulation and Application of a Piezo-Driven System Enabling Vibration-Assisted Micro Milling. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/OASIcs.iPMVM.2020.3

Abstract

The ongoing miniaturization of components and the functionalization of surfaces necessitates the improvement of micro machining processes and to increase their efficiency. One method to increase the machining efficiency is reducing the process forces and tool wear, which is achieved by the implementation of vibration-assisted cutting in conventional machining processes. In vibration-assisted cutting, the conventional cutting movement is superimposed by a vibration with defined frequency. By using vibration-assisted cutting technologies, besides increased efficiency, a wider range of materials can be machined. In this paper, vibration-assisted cutting is transferred to micro machining. For this purpose, the design, simulation and application of an easy to integrate system that enables vibration-assisted cutting for micro machining processes is described. The setup was tested using a micro milling process. Two orientations between feed direction and vibration direction were investigated. Frequencies up to 15 kHz were examined, the machined material was brass (CuZn39Pb2). The effect of the superimposed vibration was analysed on the basis of process force, surface roughness, burr formation and slot bottom and was compared with the process results of micro milling without vibration-assistance. A decrease in process forces of up to 63 % was observed during vibration-assisted micro milling.

Subject Classification

ACM Subject Classification
  • Applied computing → Physical sciences and engineering
Keywords
  • micro machining
  • micro milling
  • vibration-assisted cutting
  • Finite Element Analysis
  • surface roughness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J.C. Aurich, I.G. Reichenbach, and G.M. Schüler. Manufacture and application of ultra-small micro end mills. CIRP Annals - Manufacturing Technology, 61(1):83-86, 2012. Google Scholar
  2. D.E. Brehl and T.A. Dow. Review of vibration-assisted machining. Precision Engineering, 32:153-172, 2008. Google Scholar
  3. W. Chen, L. Zheng, X. Wenkun, K. Yang, and D. Huo. Modelling and experimental investigation on textured surface generation in vibration-assisted micro-milling. Journal of Materials Processing Technology, 266:339-350, 2019. Google Scholar
  4. D. Dornfeld, S. Mina, and Y. Takeuchi. Recent advances in mechanical micromachining. CIRP Annals - Manufacturing Technology, 55(2):745-768, 2006. Google Scholar
  5. DIN e.V. DIN EN ISO 4287:2010-07, Geometrische Produktspezifikationen (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit. Beuth Verlag, 2010. Google Scholar
  6. DIN e.V. DIN EN ISO 25178-2, Geometrische Produktspezifikationen (GPS) – Oberflächenbeschaffenheit: Flächenhaft – Teil 2: Begriffe und Oberflächen-Kenngrößen. Beuth Verlag, 2012. Google Scholar
  7. X. Gao, B. Li, J. Hong, and J. Guo. Stiffness modeling of machine tools based on machining space analysis. International Journal of Advanced Manufacturing Technology, 86(5-8):2093-2106, 2016. Google Scholar
  8. K. Janschek. Systementwurf mechatronischer Systeme. Springer-Verlag, 2010. Google Scholar
  9. X. Jin and B. Xie. Experimental study on surface generation in vibration-assisted micro-milling of glass. International Journal of Advanced Manufacturing Technology, 81:507-512, 2015. Google Scholar
  10. M.N. Kuma, S.K. Subbu, P.V. Krishna, and A. Venugopal. Vibration assisted conventional and advanced machining: A review. Procedia Engineering, 97:1577-1586, 2014. Google Scholar
  11. H. Lian, Z. Guo, Z. Huang, Y. Tang, and J. Song. Experimental research of al6061 on ultrasonic vibration assisted micro-milling. Procedia CIRP, 6:561-564, 2013. Google Scholar
  12. T. Melz. Entwicklung und Qualifikation modularer Satelitten-Systeme zur adaptiven Vibrationskompensation an mechanischen Kryokühlern. Technische Universität Darmstadt, 2001. Google Scholar
  13. K. Noma, Y. Takeda, T. Aoyama, Y. Kakinuma, and S. Hamada. High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration. Procedia CIRP, 14:389-394, 2014. Google Scholar
  14. I. G. Reichenbach, M. Bohley, F. J. Sousa, and J. C. Aurich. Tool-life criteria and wear behavior of single-edge ultra-small micro end mills. Precision Engineering, 55:48-58, 2019. Google Scholar
  15. D. Xing, J. Zhang, X. Shen, Y. Zhao, and T. Wang. Tribological properties of ultrasonic vibration assisted milling aluminium alloy surfaces. Procedia CIRP, 6:539-544, 2013. Google Scholar
  16. L. Zheng, W. Chen, and D. Huo. Review of vibration devices for vibration-assisted machining. International Journal of Advanced Manufacturing Technology, 108(5-6):1631-1651, 2020. Google Scholar
  17. L. Zheng, W. Chen, M. Pozzi, X. Teng, and D. Huo. Modulation of surface wettability by vibration assisted milling. Precision Engineering, 55:179-188, 2019. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail