Influence of Flank Face Structuring on Cooling, Tool Lifetime and Borehole Quality When Drilling Inconel 718: Physical Simulations and Experimental Validation

Authors Daniel Müller, Benjamin Kirsch, Jan C. Aurich



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.7.pdf
  • Filesize: 33.5 MB
  • 17 pages

Document Identifiers

Author Details

Daniel Müller
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Benjamin Kirsch
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems, Technische Universität Kaiserslautern, Germany

Cite As Get BibTex

Daniel Müller, Benjamin Kirsch, and Jan C. Aurich. Influence of Flank Face Structuring on Cooling, Tool Lifetime and Borehole Quality When Drilling Inconel 718: Physical Simulations and Experimental Validation. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/OASIcs.iPMVM.2020.7

Abstract

When drilling difficult-to-cut materials such as Inconel 718, the drills are exposed to high thermomechanical loads. Due to the low thermal conductivity of the workpiece material, a large amount of the generated heat has to be dissipated by the metal working fluid (MWF). However, the cutting zone is located inside the workpiece, which makes it challenging to provide sufficient MWF to the cutting zone. To solve this, drills with internal cooling channels are commonly used. In this work, the influence of differently structured flank faces on cooling efficiency, tool life, process forces and borehole quality is investigated. The influence of the structures on the cooling was investigated by Computational-Fluid-Dynamics (CFD) simulations. These simulations allow a detailed analysis of the flow conditions inside the borehole and showed that the structuring improved flow conditions, especially near the thermally highly loaded main cutting edge. The improved flow conditions resulted in an extension of the tool life by up to 22 % compared to unstructured drills in experimental investigations.

Subject Classification

ACM Subject Classification
  • Applied computing → Physical sciences and engineering
Keywords
  • drilling
  • cooling
  • CFD

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Y. Altintas. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, 2012. Google Scholar
  2. Ansys. Cfx - pre user’s guide, 2011. Google Scholar
  3. N. Beer, E. Oezkaya, and D. Biermann. Drilling of inconel 718 with geometry-modified twist drills. Procedia Cirp, 24:49-55, 2014. URL: https://doi.org/10.1016/j.procir.2014.07.124.
  4. I.A. Choudhury and M.A. El-Baradie. Machinability of nickel-base super alloys: a general review. Journal of Materials Processing Technology, 77(1-3):278-284, 1998. URL: https://doi.org/10.1016/S0924-0136(97)00429-9.
  5. F. Fallenstein and J.C. Aurich. Cfd based investigation on internal cooling of twist drills. Procedia CIRP, 14:293-298, 2014. URL: https://doi.org/10.1016/j.procir.2014.03.112.
  6. F. Fallenstein and J.C. Aurich. Kühlkanalaustrittsbedingungen beim bohren. wt Werkstattstechnik online, 105:495-500, 2015. Google Scholar
  7. D. Guo, X. Guo, K. Zhang, Y. Chen, C. Zhou, and L. Gai. Improving cutting performance of carbide twist drill combined internal cooling and micro-groove textures in high-speed drilling ti6al4v. The International Journal of Advanced Manufacturing Technology, 100(1-4):381-389, 2018. URL: https://doi.org/10.1007/s00170-018-2733-z.
  8. C. Hirsch. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Elsevier, 2007. URL: https://doi.org/10.1016/B978-0-7506-6594-0.X5037-1.
  9. P. Hänle and M. Schwenck. Optimization of cutting tools using ca-technologies. International Workshop on Modeling of Machining Operations, 8:463-468, 2005. Google Scholar
  10. F. Klocke. Manufacturing Processes 1. Springer-Verlag Berlin Heidelberg, 2011. Google Scholar
  11. I. Lazoglu, G. Poulachon, C. Ramirez, M. Akmal, B. Marcon, F. Rossi, J.C. Outeiro, and M. Krebs. Thermal analysis in ti-6al-4v drilling. CIRP Annals, 66(1):105-108, 2017. Google Scholar
  12. D. Mueller, B. Kirsch, and J.C. Aurich. The influence of structured flank faces on cooling performance when drilling. Procedia CIRP, 82:415-420, 2019. URL: https://doi.org/10.1016/j.procir.2019.03.274.
  13. D. Mueller, B. Kirsch, and J.C. Aurich. Kühlkanalaustrittsbedingungen bei bohrern. wt Werkstattstechnik online, 109(1/2):30-34, 2019. Google Scholar
  14. D. Mueller, A. Lange, B. Kirsch, and J.C. Aurich. Kühlkanalaustrittsbedingungen beim bohren. ZWF, 113:471-474, 2018. Google Scholar
  15. E. Oezkaya, N. Beer, and D. Biermann. Experimental studies and cfd simulation of the internal cooling conditions when drilling inconel 718. International Journal of Machine Tools and Manufacture, 108:52-65, 2016. URL: https://doi.org/10.1016/j.ijmachtools.2016.06.003.
  16. E. Oezkaya, M. Bücker, and D. Biermann. Simulative analyses focused on the changes in cutting fluid supply of twist drills with a modified flank face geometry. International Journal of Mechanical Sciences, 180, 2020. URL: https://doi.org/10.1016/j.ijmecsci.2020.105650.
  17. E. Oezkaya, I. Iovkov, and D. Biermann. Fluid structure interaction (fsi) modelling of deep hole twist drilling with internal cutting fluid supply. CIRP Annals, 68(1):81-84, 2019. URL: https://doi.org/10.1016/j.cirp.2019.03.003.
  18. J. Rech, P.J. Arrazola, C. Claudin, C. Courbon, F. Pusavec, and J. Kopac. Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Annals, 62(1):79-82, 2013. URL: https://doi.org/10.1016/j.cirp.2013.03.099.
  19. S. Rodriguez. Applied Computational Fluid Dynamics and Turbulence Modeling. Springer, 2019. Google Scholar
  20. H.K. Toenshoff and B. Denkena. Basics of cutting and abrasive processes. Springer-Verlag Berlin Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-33257-9.
  21. D. Zhu, X. Zhang, and H. Ding. Tool wear characteristics in machining of nickel-based superalloys. International Journal of Machine Tools and Manufacture, 64:60-77, 2013. URL: https://doi.org/10.1016/j.ijmachtools.2012.08.001.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail