Autonomy in the Age of Knowledge Graphs: Vision and Challenges

Authors Jean-Paul Calbimonte , Andrei Ciortea , Timotheus Kampik , Simon Mayer , Terry R. Payne , Valentina Tamma , Antoine Zimmermann



PDF
Thumbnail PDF

File

TGDK.1.1.13.pdf
  • Filesize: 0.74 MB
  • 22 pages

Document Identifiers

Author Details

Jean-Paul Calbimonte
  • University of Applied Sciences and Arts Western Switzerland HES-SO, Sierre, Switzerland
Andrei Ciortea
  • Institute of Computer Science, University of St.Gallen, Switzerland
Timotheus Kampik
  • Department of Computing Science, Umeå University, Sweden
  • SAP Signavio, Berlin, Germany
Simon Mayer
  • Institute of Computer Science, University of St.Gallen, Switzerland
Terry R. Payne
  • Department of Computer Science, University of Liverpool, United Kingdom
Valentina Tamma
  • Department of Computer Science, University of Liverpool, United Kingdom
Antoine Zimmermann
  • Mines Saint-Etienne, Université Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, France

Acknowledgements

We would like to thank Chiara Ghidini for the useful discussions on modelling processes using KGs to support process execution, mining and discovery.

Cite As Get BibTex

Jean-Paul Calbimonte, Andrei Ciortea, Timotheus Kampik, Simon Mayer, Terry R. Payne, Valentina Tamma, and Antoine Zimmermann. Autonomy in the Age of Knowledge Graphs: Vision and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/TGDK.1.1.13

Abstract

In this position paper, we propose that Knowledge Graphs (KGs) are one of the prime approaches to support the programming of autonomous software systems at the knowledge level. From this viewpoint, we survey how KGs can support different dimensions of autonomy in such systems: For example, the autonomy of systems with respect to their environment, or with respect to organisations; and we discuss related practical and research challenges. We emphasise that KGs need to be able to support systems of autonomous software agents that are themselves highly heterogeneous, which limits how these systems may use KGs. Furthermore, these heterogeneous software agents may populate highly dynamic environments, which implies that they require adaptive KGs. The scale of the envisioned systems - possibly stretching to the size of the Internet - highlights the maintainability of the underlying KGs that need to contain large-scale knowledge, which requires that KGs are maintained jointly by humans and machines. Furthermore, autonomous agents require procedural knowledge, and KGs should hence be explored more towards the provisioning of such knowledge to augment autonomous behaviour. Finally, we highlight the importance of modelling choices, including with respect to the selected abstraction level when modelling and with respect to the provisioning of more expressive constraint languages.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Multi-agent systems
  • Computing methodologies → Intelligent agents
  • Computer systems organization → Self-organizing autonomic computing
  • Computing methodologies → Knowledge representation and reasoning
  • Information systems → Semantic web description languages
Keywords
  • Knowledge graphs
  • Autonomous Systems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto, and Andrea Omicini. Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments. Autonomous Agents and Multi-Agent Systems, 37(2), jun 2023. URL: https://doi.org/10.1007/S10458-023-09609-6.
  2. Alberto Olivares Alarcos, Daniel Beßler, Alaa M. Khamis, P-J. Sequeira Gonçalves, Maki K. Habib, Julita Bermejo-Alonso, Marcos E. Barreto, Mohammed Diab, Jan Rosell, João Quintas, Joanna Isabelle Olszewska, Hirenkumar Chandrakant Nakawala, Edison Pignaton de Freitas, Amelie Gyrard, Stefano Borgo, G. Alenyà, Michael Beetz, and Howard Li. A review and comparison of ontology-based approaches to robot autonomy. The Knowledge Engineering Review, 34, 2019. URL: https://doi.org/10.1017/S0269888919000237.
  3. Prithviraj Ammanabrolu and Matthew J. Hausknecht. Graph constrained reinforcement learning for natural language action spaces. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL: https://openreview.net/forum?id=B1x6w0EtwH.
  4. Luigi Asprino, Paolo Ciancarini, Andrea Giovanni Nuzzolese, Valentina Presutti, and Alessandro Russo. A reference architecture for social robots. Journal of Web Semantics, 72:100683, 2022. URL: https://doi.org/10.1016/J.WEBSEM.2021.100683.
  5. Stefan Bachhofner, Elmar Kiesling, Kate Revoredo, Philipp Waibel, and Axel Polleres. Automated process knowledge graph construction from BPMN models. In Christine Strauss, Alfredo Cuzzocrea, Gabriele Kotsis, A. Min Tjoa, and Ismail Khalil, editors, Database and Expert Systems Applications, pages 32-47, Cham, 2022. Springer International Publishing. URL: https://doi.org/10.1007/978-3-031-12423-5_3.
  6. Wei Bai, Emmanuel Tadjouddine, and Terry Payne. A dialectical approach to enable decision making in online trading. In Michael Rovatsos, George Vouros, and Vicente Julian, editors, Multi-Agent Systems and Agreement Technologies, pages 203-218. Springer International Publishing, 2016. URL: https://doi.org/10.1007/978-3-319-33509-4_17.
  7. Stephen Balakirsky, Zeid Kootbally, Thomas Kramer, Anthony Pietromartire, Craig Schlenoff, and Satyandra Gupta. Knowledge driven robotics for kitting applications. Robotics and Autonomous Systems, 61(11):1205-1214, 2013. Ubiquitous Robotics. URL: https://doi.org/10.1016/J.ROBOT.2013.04.006.
  8. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti, and Munindar P. Singh. Choice, interoperability, and conformance in interaction protocols and service choreographies. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, volume 2, pages 843-850. International Foundation for Autonomous Agents and Multiagent Systems, 2009. URL: https://dl.acm.org/doi/abs/10.5555/1558109.1558129.
  9. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Grossniklaus. C-SPARQL: a continuous query language for RDF data streams. International Journal of Semantic Computing, 4(01):3-25, 2010. URL: https://doi.org/10.1142/S1793351X10000936.
  10. Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT '21, pages 610-623, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3442188.3445922.
  11. Daniel Beßler, Mihai Pomarlan, and Michael Beetz. OWL-Enabled Assembly Planning for Robotic Agents. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pages 1684-1692. International Foundation for Autonomous Agents and Multiagent Systems, 2018. URL: https://dl.acm.org/doi/10.5555/3237383.3237950.
  12. Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and Andrea Santi. Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6):747-761, 2013. URL: https://doi.org/10.1016/J.SCICO.2011.10.004.
  13. Rafael H. Bordini, Amal El Fallah Seghrouchni, Koen Hindriks, Brian Logan, and Alessandro Ricci. Agent programming in the cognitive era. Autonomous Agents and Multi-Agent Systems, 34(2), may 2020. URL: https://doi.org/10.1007/S10458-020-09453-Y.
  14. Yasser Bourahla, Manuel Atencia, and Jérôme Euzenat. Knowledge improvement and diversity under interaction-driven adaptation of learned ontologies. In AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pages 242-250. International Foundation for Autonomous Agents and Multiagent Systems, 2021. URL: https://dl.acm.org/doi/10.5555/3463952.3463986, URL: https://doi.org/10.5555/3463952.3463986.
  15. Dan Brickley and Ramanathan Guha. RDF Schema 1.1. W3C recommendation, World Wide Web Consortium, feb 2014. URL: https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.
  16. John Cantwell. A formal model of multi-agent belief-interaction. Journal of Logic, Language and Information, 15:303-329, 2006. URL: https://doi.org/10.1007/S10849-006-3776-3.
  17. Cristiano Castelfranchi and Rino Falcone. From Automaticity to Autonomy: The Frontier of Artificial Agents, pages 103-136. Springer US, Boston, MA, 2003. URL: https://doi.org/10.1007/978-1-4419-9198-0_6.
  18. Adam Cheyer and David Martin. The Open Agent Architecture. Autonomous Agents and Multi-Agent Systems, 4(1-2):143-148, 2001. URL: https://doi.org/10.1023/A:1010091302035.
  19. Prateek Chhikara, Jiarui Zhang, Filip Ilievski, Jonathan Francis, and Kaixin Ma. Knowledge-enhanced Agents for Interactive Text Games, 2023. URL: https://doi.org/10.48550/arXiv.2305.05091.
  20. Amit Chopra, Leendert van der Torre, Harko Verhagen, and Serena Villata. Handbook of Normative Multiagent Systems. College Publications, Rickmansworth, 2018. Google Scholar
  21. Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. An evaluation of communication protocol languages for engineering multiagent systems. Journal of Artificial Intelligence Research, 69:1351-1393, dec 2020. URL: https://doi.org/10.1613/JAIR.1.12212.
  22. Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, World Wide Web Consortium, February 25 2014. URL: https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
  23. Marina De Vos, Sabrina Kirrane, Julian Padget, and Ken Satoh. ODRL Policy Modelling and Compliance Checking. In Paul Fodor, Marco Montali, Diego Calvanese, and Dumitru Roman, editors, Rules and Reasoning, pages 36-51, Cham, 2019. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-31095-0_3.
  24. Emanuele Della Valle, Stefano Ceri, Frank Van Harmelen, and Dieter Fensel. It’s a streaming world! reasoning upon rapidly changing information. IEEE Intelligent Systems, 24(6):83-89, 2009. URL: https://doi.org/10.1109/MIS.2009.125.
  25. Daniele Dell’Aglio, Jean-Paul Calbimonte, Emanuele Della Valle, and Oscar Corcho. Towards a Unified Language for RDF Stream Query Processing. In The Semantic Web: ESWC 2015 Satellite Events - ESWC 2015 Satellite Events Portorož, Slovenia, May 31 - June 4, 2015, Revised Selected Papers, pages 353-363. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-25639-9_48.
  26. Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and Abraham Bernstein. Stream reasoning: A survey and outlook. Data Science, 1(1-2):59-83, 2017. URL: https://doi.org/10.3233/DS-170006.
  27. Paul Doran, Valentina Tamma, Terry R. Payne, and Ignazio Palmisano. Dynamic selection of ontological alignments: a space reduction mechanism. In Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09) (10/07/09 - 16/07/09), jul 2009. URL: http://ijcai.org/Proceedings/09/Papers/334.pdf.
  28. Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In International Conference on Semantic Systems, 2016. URL: https://ceur-ws.org/Vol-1695/paper4.pdf.
  29. Ulrich Endriss, Nicolas Maudet, Fariba Sadri, and Francesca Toni. Aspects of protocol conformance in inter-agent dialogue. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pages 982-983, 2003. URL: https://doi.org/10.1145/860575.860756.
  30. Stefan Esser and Dirk Fahland. Multi-dimensional event data in graph databases. Journal on Data Semantics, 10:109-141, 2020. URL: https://doi.org/10.1007/S13740-021-00122-1.
  31. Jérôme Euzenat. Interaction-based ontology alignment repair with expansion and relaxation. In IJCAI 2017-26th International Joint Conference on Artificial Intelligence, pages 185-191. AAAI Press, 2017. URL: https://doi.org/10.24963/IJCAI.2017/27.
  32. Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Yves Demazeau, editor, Proceedings of the Third International Conference on Multiagent Systems, ICMAS 1998, Paris, France, July 3-7, 1998, pages 128-135. IEEE Computer Society, 1998. URL: https://doi.org/10.1109/ICMAS.1998.699041.
  33. Nicoletta Fornara and Marco Colombetti. Using semantic web technologies and production rules for reasoning on obligations, permissions, and prohibitions. Ai Communications, 32(4):319-334, 2019. URL: https://doi.org/10.3233/AIC-190617.
  34. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specification. Technical report, Foundation for Intelligent Physical Agents - FIPA ACL Message Structure Specification, 2002. URL: http://www.fipa.org/specs/fipa00061/SC00061G.pdf.
  35. Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc Schneider. Sweetening ontologies with DOLCE. In International conference on knowledge engineering and knowledge management, pages 166-181. Springer, 2002. URL: https://doi.org/10.1007/3-540-45810-7_18.
  36. Amélie Gyrard, Pankesh Patel, Amit Sheth, and Martin Serrano. Building the web of knowledge with smart IoT applications. IEEE Intelligent Systems, 31(5):83-88, 2016. URL: https://doi.org/10.1109/MIS.2016.81.
  37. Armin Haller, Krzysztof Janowicz, Simon J. D. Cox, Maxime Lefrançois, Kerry L. Taylor, Danh Le-Phuoc, Joshua Lieberman, Raúl García-Castro, Robert Atkinson, and Claus Stadler. The modular SSN ontology: A joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic Web, 10:9-32, 2018. URL: https://doi.org/10.3233/SW-180320.
  38. Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Number 22 in Synthesis Lectures on Data, Semantics, and Knowledge. Springer, 2021. URL: https://doi.org/10.2200/S01125ED1V01Y202109DSK022.
  39. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, S. Tabet, Benjamin Grosof, and Mike Dean. SWRL: A semantic web rule language combining OWL and RuleML. Technical report, W3C Member Submission, 2004. URL: https://www.w3.org/submissions/SWRL/.
  40. Thomas Hubauer, Steffen Lamparter, Peter Haase, and Daniel Markus Herzig. Use cases of the industrial knowledge graph at Siemens. In Marieke van Erp, Medha Atre, Vanessa López, Kavitha Srinivas, and Carolina Fortuna, editors, Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018, volume 2180 of CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL: https://ceur-ws.org/Vol-2180/paper-86.pdf.
  41. Michael N. Huhns and Munindar P. Singh. Ontologies for agents. IEEE Internet computing, 1(6):81-83, 1997. URL: https://doi.org/10.1109/4236.643942.
  42. Filip Ilievski, Pedro Szekely, and Bin Zhang. CSKG: The commonsense knowledge graph. In The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, June 6-10, 2021, Proceedings 18, pages 680-696. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-77385-4_41.
  43. Sebastian Käbisch, Ege Korkan, and Michael McCool. Web of things (WoT) thing description 1.1. W3C proposed reccommendation, World Wide Web Consortium, jul 2023. URL: https://www.w3.org/TR/2023/PR-wot-thing-description11-20230711/.
  44. Timotheus Kampik, Adnane Mansour, Olivier Boissier, Sabrina Kirrane, Julian A. Padget, Terry R. Payne, Munindar P. Singh, Valentina A. M. Tamma, and Antoine Zimmermann. Governance of autonomous agents on the web: Challenges and opportunities. ACM Trans. Internet Techn., 22(4):104:1-104:31, 2022. URL: https://doi.org/10.1145/3507910.
  45. Shahrzad Khayatbashi, Olaf Hartig, and Amin Jalali. Transforming event knowledge graph to object-centric event logs: A comparative study for multi-dimensional process analysis. In Proceedings of the 42nd International Conference on Conceptual Modeling, pages 220-238. Springer Nature Switzerland, 2023. URL: https://doi.org/10.1007/978-3-031-47262-6_12.
  46. Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language (SHACL), W3C Recommendation 20 July 2017. W3c recommendation, World Wide Web Consortium, July 20 2017. URL: https://www.w3.org/TR/2017/REC-shacl-20170720/.
  47. Zeid Kootbally, Craig I. Schlenoff, Christopher R. Lawler, Thomas R. Kramer, and Satyandra K. Gupta. Towards robust assembly with knowledge representation for the planning domain definition language (PDDL). Robotics and Computer-Integrated Manufacturing, 33:42-55, 2015. Special Issue on Knowledge Driven Robotics and Manufacturing. URL: https://doi.org/10.1016/j.rcim.2014.08.006.
  48. Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic primer, 2013. URL: https://doi.org/10.48550/arXiv.1201.4089.
  49. Loredana Laera, Ian Blacoe, Valentina Tamma, Terry Payne, Jérôme Euzenat, and Trevor Bench-Capon. Argumentation over ontology correspondences in mas. In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, pages 1-8, 2007. URL: https://doi.org/10.1145/1329125.1329400.
  50. Pat Langley, John E. Laird, and Seth Rogers. Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10(2):141-160, 2009. URL: https://doi.org/10.1016/J.COGSYS.2006.07.004.
  51. Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A native and adaptive approach for unified processing of linked streams and linked data. In International Semantic Web Conference, pages 370-388. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25073-6_24.
  52. Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Hung Ngo Quoc, Tuan Tran Nhat, and Manfred Hauswirth. The Graph of Things: A step towards the Live Knowledge Graph of connected things. Journal of Web Semantics, 37-38:25-35, 2016. URL: https://doi.org/10.1016/J.WEBSEM.2016.02.003.
  53. Tim Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao. PROV-O: The PROV ontology: W3C recommendation 30 April 2013, apr 2013. URL: https://www.w3.org/TR/prov-o/.
  54. Jérémy Lemée, Danai Vachtsevanou, Simon Mayer, and Andrei Ciortea. Signifiers for Affordance-driven Multi-Agent Systems. In International Workshop on Engineering Multi-Agent Systems (EMAS) at the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2022. URL: https://www.alexandria.unisg.ch/handle/20.500.14171/108730.
  55. Michael Luck and Peter McBurney. Computing as interaction: Agent and agreement technologies. In IEEE International Conference on Distributed Human-Machine Systems. IEEE Press, 2008. URL: https://nms.kcl.ac.uk/michael.luck/resources/dhms08.pdf.
  56. Alexander Maedche, Boris Motik, Ljiljana Stojanovic, Rudi Studer, and Raphael Volz. An infrastructure for searching, reusing and evolving distributed ontologies. In Proceedings of the 12th international conference on World Wide Web, pages 439-448, 2003. URL: https://doi.org/10.1145/775152.775215.
  57. Simon Mayer, Jack Hodges, Dan Yu, Mareike Kritzler, and Florian Michahelles. An open semantic framework for the industrial internet of things. IEEE Intelligent Systems, 32(1):96-101, 2017. URL: https://doi.org/10.1109/MIS.2017.9.
  58. Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - The Planning Domain Definition Language. Technical Report CVC TR98003/DCS TR1165, Yale Center for Computational Vision and Control, oct 1998. URL: https://www.cs.cmu.edu/afs/cs/user/mmv/www/papers/98aips-PDDL.pdf.
  59. Sascha Meckler, Harald Steinmüller, and Andreas Harth. Building a knowledge graph with inference for a production machine using the web of things standard. In Advances and Trends in Artificial Intelligence. From Theory to Practice: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26-29, 2021, Proceedings, Part II 34, pages 240-251. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79463-7_20.
  60. Katarina Milenkovic, Simon Mayer, Konrad Diwold, and Josef Zehetner. Enabling knowledge management in complex industrial processes using semantic web technology, 2019. URL: https://www.alexandria.unisg.ch/handle/20.500.14171/98451.
  61. Justin J. Miller. Graph Database Applications and Concepts with Neo4j. In Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA March 23rd-24th, 2013, pages 141-147. Association for Information Systems, 2013. URL: https://aisel.aisnet.org/sais2013/24.
  62. Ian Niles and Adam Pease. Towards a standard upper ontology. In Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001, pages 2-9, 2001. URL: https://doi.org/10.1145/505168.505170.
  63. Pablo Noriega. Agent Mediated Auctions: The Fishmarket Metaphor. PhD thesis, Universitat Autònoma de Barcelona, 1997. URL: https://www.iiia.csic.es/research/thesis-details?pastphd_id=85.
  64. Ignazio Palmisano, Valentina Tamma, Terry Payne, and Paul Doran. Task oriented evaluation of module extraction techniques. In Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic Web - ISWC 2009, pages 130-145, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-04930-9_9.
  65. Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large language models and knowledge graphs: Opportunities and challenges, 2023. URL: https://doi.org/10.48550/arXiv.2308.06374.
  66. Massimo Paolucci, Takahiro Kawamura, Terry R Payne, and Katia Sycara. Semantic matching of web services capabilities. In The Semantic Web—ISWC 2002: First International Semantic Web Conference Sardinia, Italy, June 9-12, 2002 Proceedings 1, pages 333-347. Springer, 2002. URL: https://doi.org/10.1007/3-540-48005-6_26.
  67. Massimo Paolucci, Onn Shehory, Katia Sycara, Dirk Kalp, and Anandeep Pannu. A planning component for RETSINA agents. In Nicholas R. Jennings and Yves Lespérance, editors, Intelligent Agents VI. Agent Theories, Architectures, and Languages, pages 147-161, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/10719619_11.
  68. Paolo Pareti and George Konstantinidis. A review of SHACL: From data validation to schema reasoning for RDF graphs. In Reasoning Web. Declarative Artificial Intelligence: 17th International Summer School 2021, Leuven, Belgium, September 8–15, 2021, Tutorial Lectures, pages 115-144, Berlin, Heidelberg, 2021. Springer-Verlag. URL: https://doi.org/10.1007/978-3-030-95481-9_6.
  69. Bijan Parsia, Peter Patel-Schneider, and Boris Motik. OWL 2 web ontology language structural specification and functional-style syntax (second edition). W3C recommendation, World Wide Web Consortium, dec 2012. https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/. Google Scholar
  70. Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web, 8(3):489-508, jan 2017. URL: https://doi.org/10.3233/SW-160218.
  71. Jeremy Pitt and Abe Mamdani. A protocol-based semantics for an agent communication language. In IJCAI, volume 99, pages 486-491, 1999. URL: https://dl.acm.org/doi/abs/10.5555/1624218.1624288.
  72. David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1(4):515-526, 1978. URL: https://doi.org/10.1017/S0140525X00076512.
  73. Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico Oliva. Cognitive stigmergy: Towards a framework based on agents and artifacts. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environments for Multi-Agent Systems III, volume 4389, pages 124-140, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-71103-2_7.
  74. Dennis M. Riehle, Sven Jannaber, Patrick Delfmann, Oliver Thomas, and Jörg Becker. Automatically annotating business process models with ontology concepts at design-time. In Sergio de Cesare and Ulrich Frank, editors, Advances in Conceptual Modeling, pages 177-186, Cham, 2017. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-70625-2_17.
  75. Livio Robaldo, Sotirios Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, and Jessica Zangar. Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies. Artificial Intelligence and Law, jun 2023. URL: https://doi.org/10.1007/s10506-023-09360-z.
  76. Daniel Schraudner. Stigmergic multi-agent systems in the semantic web of things. In Ruben Verborgh, Anastasia Dimou, Aidan Hogan, Claudia d'Amato, Ilaria Tiddi, Arne Bröring, Simon Mayer, Femke Ongenae, Riccardo Tommasini, and Mehwish Alam, editors, The Semantic Web: ESWC 2021 Satellite Events, pages 218-229, Cham, 2021. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-80418-3_34.
  77. Guus Schreiber and Fabien Gandon. RDF 1.1 XML syntax. W3C recommendation, World Wide Web Consortium, feb 2014. URL: https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/.
  78. Paul R. Smart and Nigel R. Shadbolt. Social Machines, pages 6855-6862. IGI Global, jul 2015. URL: https://doi.org/10.4018/978-1-4666-5888-2.ch675.
  79. John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady Zaslavsky, Ivana Podnar Žarko, et al. Openiot: Open source internet-of-things in the cloud. In Interoperability and Open-Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia, September 18, 2014, Invited Papers, pages 13-25. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-16546-2_3.
  80. Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings. Flexible provisioning of web service workflows. ACM Trans. Internet Technol., 9(1):1-45, feb 2009. URL: https://doi.org/10.1145/1462159.1462161.
  81. Simon Steyskal and Axel Polleres. Towards formal semantics for ODRL policies. In Nick Bassiliades, Georg Gottlob, Fariba Sadri, Adrian Paschke, and Dumitru Roman, editors, Rule Technologies: Foundations, Tools, and Applications, pages 360-375, Cham, 2015. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-21542-6_23.
  82. Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architectures for language agents, 2023. URL: https://doi.org/10.48550/ARXIV.2309.02427.
  83. Yousouf Taghzouti, Danai Vachtsevanou, Simon Mayer, and Andrei Ciortea. A step toward semantic content negotiation. In 23rd International Conference on Knowledge Engineering and Knowledge Management (EKAW). CEUR-WS, 2022. URL: https://ceur-ws.org/Vol-3256/paper5.pdf.
  84. Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res., 10:1633-1685, dec 2009. URL: https://doi.org/10.5555/1577069.1755839.
  85. Moritz Tenorth and Michael Beetz. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research, 32(5):566-590, 2013. URL: https://doi.org/10.1177/0278364913481635.
  86. Georgia Troullinou, Haridimos Kondylakis, Evangelia Daskalaki, and Dimitris Plexousakis. Ontology understanding without tears: The summarization approach. Semant. Web, 8(6):797-815, jan 2017. URL: https://doi.org/10.3233/SW-170264.
  87. Danai Vachtsevanou, Andrei Ciortea, Simon Mayer, and Jérémy Lemée. Signifiers as a first-class abstraction in hypermedia multi-agent systems. In Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems, AAMAS '23, pages 1200-1208, Richland, SC, 2023. International Foundation for Autonomous Agents and Multiagent Systems. URL: https://doi.org/10.5555/3545946.3598763.
  88. Danai Vachtsevanou, Philip Junker, Andrei Ciortea, Iori Mizutani, and Simon Mayer. Long-lived agents on the web: Continuous acquisition of behaviors in hypermedia environments. In Companion Proceedings of the Web Conference 2020, WWW '20, pages 185-189, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3366424.3383537.
  89. Dylan Van Assche, Thomas Delva, Gerald Haesendonck, Pieter Heyvaert, Ben De Meester, and Anastasia Dimou. Declarative RDF graph generation from heterogeneous (semi-) structured data: A systematic literature review. Journal of Web Semantics, page 100753, 2022. URL: https://doi.org/10.1016/J.WEBSEM.2022.100753.
  90. Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communications of the ACM, 57(10):78-85, 2014. URL: https://doi.org/10.1145/2629489.
  91. Antonia Wild, Andrei Ciortea, and Simon Mayer. Designing social machines for tackling online disinformation. In Companion Proceedings of the Web Conference 2020, WWW '20, pages 650-654, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3366424.3385770.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail