Strong Faithfulness for ELH Ontology Embeddings

Authors Victor Lacerda , Ana Ozaki , Ricardo Guimarães



PDF
Thumbnail PDF

File

TGDK.2.3.2.pdf
  • Filesize: 0.99 MB
  • 29 pages

Document Identifiers

Author Details

Victor Lacerda
  • University of Bergen, Norway
Ana Ozaki
  • University of Oslo, Norway
  • University of Bergen, Norway
Ricardo Guimarães
  • Zivid AS, Norway

Cite As Get BibTex

Victor Lacerda, Ana Ozaki, and Ricardo Guimarães. Strong Faithfulness for ELH Ontology Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 3, pp. 2:1-2:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/TGDK.2.3.2

Abstract

Ontology embedding methods are powerful approaches to represent and reason over structured knowledge in various domains. One advantage of ontology embeddings over knowledge graph embeddings is their ability to capture and impose an underlying schema to which the model must conform. Despite advances, most current approaches do not guarantee that the resulting embedding respects the axioms the ontology entails. In this work, we formally prove that normalized ELH has the strong faithfulness property on convex geometric models, which means that there is an embedding that precisely captures the original ontology. We present a region-based geometric model for embedding normalized ELH ontologies into a continuous vector space. To prove strong faithfulness, our construction takes advantage of the fact that normalized ELH has a finite canonical model. We first prove the statement assuming (possibly) non-convex regions, allowing us to keep the required dimensions low. Then, we impose convexity on the regions and show the property still holds. Finally, we consider reasoning tasks on geometric models and analyze the complexity in the class of convex geometric models used for proving strong faithfulness.

Subject Classification

ACM Subject Classification
  • Theory of computation → Description logics
Keywords
  • Knowledge Graph Embeddings
  • Ontologies
  • Description Logic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. BoxE: A box embedding model for knowledge base completion. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 9649-9661. Curran Associates, Inc., 2020. URL: https://doi.org/10.5555/3495724.3496533.
  2. Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description Logic. Cambridge University Press, USA, 1st edition, 2017. URL: https://doi.org/10.1017/9781139025355.
  3. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL: https://doi.org/10.5555/2999792.2999923.
  4. Stefan Borgwardt and Veronika Thost. LTL over EL Axioms. Technische Universität Dresden, 2015. URL: https://doi.org/10.25368/2022.213.
  5. Camille Bourgaux, Ricardo Guimarães, Raoul Koudijs, Victor Lacerda, and Ana Ozaki. Knowledge base embeddings: Semantics and theoretical properties. In Proceedings of the TwentyFirst International Conference on Principles of Knowledge Representation and Reasoning, pages 823-833, Hanoi, Vietnam, November 2024. International Joint Conferences on Artificial Intelligence Organization. URL: https://doi.org/10.24963/kr.2024/77.
  6. Camille Bourgaux, Ana Ozaki, and Jeff Z. Pan. Geometric models for (temporally) attributed description logics. In Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt, editors, DL, volume 2954 of CEUR Workshop Proceedings. CEUR-WS.org, 2021. URL: https://ceur-ws.org/Vol-2954/paper-7.pdf.
  7. Jiaoyan Chen, Pan Hu, Ernesto Jimenez-Ruiz, Ole Magnus Holter, Denvar Antonyrajah, and Ian Horrocks. Owl2vec*: embedding of owl ontologies. Machine Learning, 110(7):1813-1845, July 2021. URL: https://doi.org/10.1007/s10994-021-05997-6.
  8. Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wenzhong Guo. A Survey on Knowledge Graph Embedding: Approaches, Applications and Benchmarks. Electronics, 9(5):750, May 2020. URL: https://doi.org/10.3390/electronics9050750.
  9. Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background knowledge into embedding models for predictive tasks on knowledge graphs. In Ruben Verborgh, Katja Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria Maleshkova, Oscar Corcho, Petar Ristoski, and Mehwish Alam, editors, The Semantic Web, pages 441-457. Springer International Publishing, 2021. URL: https://doi.org/10.1007/978-3-030-77385-4_26.
  10. Víctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding to ontology embedding? an analysis of the compatibility between vector space representations and rules. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, KR, pages 379-388. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18013, URL: https://doi.org/10.4230/OASIcs.AIB.2022.3.
  11. Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. The MIT Press, March 2000. URL: https://doi.org/10.7551/mitpress/2076.001.0001.
  12. Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009. Google Scholar
  13. Anders Imenes, Ricardo Guimarães, and Ana Ozaki. Marrying query rewriting and knowledge graph embeddings. In RuleML+RR, pages 126-140. Springer-Verlag, 2023. URL: https://doi.org/10.1007/978-3-031-45072-3_9.
  14. Mathias Jackermeier, Jiaoyan Chen, and Ian Horrocks. Dual box embeddings for the description logic el^++. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee, editors, Proceedings of the ACM on Web Conference, WWW, pages 2250-2258. ACM, 2024. URL: https://doi.org/10.1145/3589334.3645648.
  15. Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert Hoehndorf. EL embeddings: Geometric construction of models for the description logic EL++. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 6103-6109. ijcai.org, 2019. URL: https://doi.org/10.24963/ijcai.2019/845.
  16. Victor Lacerda, Ana Ozaki, and Ricardo Guimarães. Faithel: Strongly tbox faithful knowledge base embeddings for EL. In Sabrina Kirrane, Mantas Šimkus, Ahmet Soylu, and Dumitru Roman, editors, Rules and Reasoning, pages 191-199, Cham, 2024. Springer Nature Switzerland. URL: https://doi.org/10.1007/978-3-031-72407-7_14.
  17. Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation embeddings for knowledge graph completion. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), February 2015. URL: https://doi.org/10.1609/aaai.v29i1.9491.
  18. Carsten Lutz and Frank Wolter. Deciding inseparability and conservative extensions in the description logic el. Journal of Symbolic Computation, 45(2):194-228, February 2010. URL: https://doi.org/10.1016/j.jsc.2008.10.007.
  19. Sutapa Mondal, Sumit Bhatia, and Raghava Mutharaju. Emel++: Embeddings for EL++ description logic. In Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, and Frank van Harmelen, editors, AAAI-MAKE, volume 2846 of CEUR Workshop Proceedings. CEUR-WS.org, 2021. URL: https://ceur-ws.org/Vol-2846/paper19.pdf.
  20. Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich Wolter. Cone semantics for logics with negation. In Christian Bessiere, editor, IJCAI, pages 1820-1826. ijcai.org, 2020. URL: https://doi.org/10.24963/ijcai.2020/252.
  21. Aleksandar Pavlovic and Emanuel Sallinger. ExpressivE: A spatio-functional embedding for knowledge graph completion. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL: https://openreview.net/pdf?id=xkev3_np08z.
  22. Xi Peng, Zhenwei Tang, Maxat Kulmanov, Kexin Niu, and Robert Hoehndorf. Description logic EL++ embeddings with intersectional closure. CoRR, abs/2202.14018, 2022. https://arxiv.org/abs/2202.14018, URL: https://doi.org/10.48550/arXiv.2202.14018.
  23. Xi Peng, Zhenwei Tang, Maxat Kulmanov, Kexin Niu, and Robert Hoehndorf. Description logic EL++ embeddings with intersectional closure. CoRR, abs/2202.14018, 2022. URL: https://arxiv.org/abs/2202.14018.
  24. Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embeddings for simple link prediction. arXiv, June 2016. URL: https://doi.org/10.48550/arXiv.1606.06357.
  25. Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledgebase. Commun. ACM, 57(10):78-85, September 2014. URL: https://doi.org/10.1145/2629489.
  26. Bo Xiong, Nico Potyka, Trung-Kien Tran, Mojtaba Nayyeri, and Steffen Staab. Faithful embeddings for EL++ knowledge bases. In The Semantic Web endash ISWC 2022, pages 22-38. Springer International Publishing, 2022. URL: https://doi.org/10.1007/978-3-031-19433-7_2.
  27. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases. arXiv, August 2015. URL: https://arxiv.org/abs/1412.6575.
  28. Frank Zenker and Peter Gärdenfors. Applications of Conceptual Spaces: The Case for Geometric Knowledge Representation, volume 359 of Synthese Library. Springer International Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-15021-5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail