HTML Export for Dagstuhl Seminar Proceedings, Volume 5051

Copy to Clipboard Download

<h2>Dagstuhl Seminar Proceedings, Volume 5051, </h2>
<ul>
<li>
    <span class="authors">Luc De Raedt, Tom Dietterich, Lise Getoor, and Stephen H. Muggleton</span>
    <span class="title">05051 Abstracts Collection – Probabilistic, Logical and Relational Learning - Towards a Synthesis</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.1">10.4230/DagSemProc.05051.1</a>
</li>
<li>
    <span class="authors">Luc De Raedt, Tom Dietterich, Lise Getoor, and Stephen H. Muggleton</span>
    <span class="title">05051 Executive Summary – Probabilistic, Logical and Relational Learning - Towards a Synthesis</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.2">10.4230/DagSemProc.05051.2</a>
</li>
<li>
    <span class="authors">John W. Lloyd and Tim D. Sears</span>
    <span class="title">An Architecture for Rational Agents</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.3">10.4230/DagSemProc.05051.3</a>
</li>
<li>
    <span class="authors">Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov</span>
    <span class="title">BLOG: Probabilistic Models with Unknown Objects</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.4">10.4230/DagSemProc.05051.4</a>
</li>
<li>
    <span class="authors">Elias Gyftodimos and Peter A. Flach</span>
    <span class="title">Combining Bayesian Networks with Higher-Order Data Representations</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.5">10.4230/DagSemProc.05051.5</a>
</li>
<li>
    <span class="authors">Nicos Angelopoulos and James Cussens</span>
    <span class="title">Exploiting independence for branch operations in Bayesian learning of C&amp;RTs</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.6">10.4230/DagSemProc.05051.6</a>
</li>
<li>
    <span class="authors">Manfred Jaeger</span>
    <span class="title">Importance Sampling on Relational Bayesian Networks</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.7">10.4230/DagSemProc.05051.7</a>
</li>
<li>
    <span class="authors">Andrea Passerini, Paolo Frasconi, and Luc De Raedt</span>
    <span class="title">Kernels on Prolog Proof Trees:Statistical Learning in the ILP Setting</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.8">10.4230/DagSemProc.05051.8</a>
</li>
<li>
    <span class="authors">Taisuke Sato and Yoshitaka Kameya</span>
    <span class="title">Learning through failure</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.9">10.4230/DagSemProc.05051.9</a>
</li>
<li>
    <span class="authors">Jennifer Neville and David Jensen</span>
    <span class="title">Leveraging relational autocorrelation with latent group models</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.10">10.4230/DagSemProc.05051.10</a>
</li>
<li>
    <span class="authors">Tobias Scheffer</span>
    <span class="title">Multi-View Learning and Link Farm Discovery</span>
    <a class="doi" href="https://doi.org/10.4230/DagSemProc.05051.11">10.4230/DagSemProc.05051.11</a>
</li>
</ul>

The metadata provided by Dagstuhl Publishing on its webpages, as well as their export formats (such as XML or BibTeX) available at our website, is released under the CC0 1.0 Public Domain Dedication license. That is, you are free to copy, distribute, use, modify, transform, build upon, and produce derived works from our data, even for commercial purposes, all without asking permission. Of course, we are always happy if you provide a link to us as the source of the data.

Read the full CC0 1.0 legal code for the exact terms that apply: https://creativecommons.org/publicdomain/zero/1.0/legalcode

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail