5 Search Results for "Antonopoulos, Timos"


Document
Omega-Regular Verification and Control for Distributional Specifications in MDPs

Authors: S. Akshay, Ouldouz Neysari, and Ðorđe Žikelić

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
A classical approach to studying Markov decision processes (MDPs) is to view them as state transformers. However, MDPs can also be viewed as distribution transformers, where an MDP under a strategy generates a sequence of probability distributions over MDP states. This view arises in several applications, even as the probabilistic model checking problem becomes much harder compared to the classical state transformer counterpart. It is known that even distributional reachability and safety problems become computationally intractable (Skolem- and positivity-hard). To address this challenge, recent works focused on sound but possibly incomplete methods for verification and control of MDPs under the distributional view. However, existing automated methods are applicable only to distributional reachability, safety and reach-avoidance specifications. In this work, we present the first automated method for verification and control of MDPs with respect to distributional omega-regular specifications. To achieve this, we propose a novel notion of distributional certificates, which are sound and complete proof rules for proving that an MDP under a distributionally memoryless strategy satisfies some distributional omega-regular specification. We then use our distributional certificates to design the first fully automated algorithms for verification and control of MDPs with respect to distributional omega-regular specifications. Our algorithms follow a template-based synthesis approach and provide soundness and relative completeness guarantees, while running in PSPACE. Our prototype implementation demonstrates practical applicability of our algorithms to challenging examples collected from the literature.

Cite as

S. Akshay, Ouldouz Neysari, and Ðorđe Žikelić. Omega-Regular Verification and Control for Distributional Specifications in MDPs. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.CONCUR.2025.6,
  author =	{Akshay, S. and Neysari, Ouldouz and \v{Z}ikeli\'{c}, Ðor{\d}e},
  title =	{{Omega-Regular Verification and Control for Distributional Specifications in MDPs}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.6},
  URN =		{urn:nbn:de:0030-drops-239562},
  doi =		{10.4230/LIPIcs.CONCUR.2025.6},
  annote =	{Keywords: MDPs, Distributional objectives, \omega-regularity, Certificates}
}
Document
Invited Talk
Privacy-Preserving SAT Solving (Invited Talk)

Authors: Ruzica Piskac

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
This is an extended abstract of the invited talk presented at the joint conferences "28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)" and "31st International Conference on Principles and Practice of Constraint Programming (CP 2025)". The talk is based on a series of three papers published previously, and it provides a unified overview of their key ideas and results.

Cite as

Ruzica Piskac. Privacy-Preserving SAT Solving (Invited Talk). In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{piskac:LIPIcs.CP.2025.1,
  author =	{Piskac, Ruzica},
  title =	{{Privacy-Preserving SAT Solving}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.1},
  URN =		{urn:nbn:de:0030-drops-238626},
  doi =		{10.4230/LIPIcs.CP.2025.1},
  annote =	{Keywords: SAT solving, Privacy-preserving reasoning, Zero-knowledge proofs, Propositional unsatisfiability}
}
Document
Invited Talk
Privacy-Preserving SAT Solving (Invited Talk)

Authors: Ruzica Piskac

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
This is an extended abstract of the invited talk presented at the joint conferences "28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)" and "31st International Conference on Principles and Practice of Constraint Programming (CP 2025)". The talk is based on a series of three papers published previously, and it provides a unified overview of their key ideas and results.

Cite as

Ruzica Piskac. Privacy-Preserving SAT Solving (Invited Talk). In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{piskac:LIPIcs.SAT.2025.1,
  author =	{Piskac, Ruzica},
  title =	{{Privacy-Preserving SAT Solving}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.1},
  URN =		{urn:nbn:de:0030-drops-237356},
  doi =		{10.4230/LIPIcs.SAT.2025.1},
  annote =	{Keywords: SAT solving, Privacy-preserving reasoning, Zero-knowledge proofs, Propositional unsatisfiability}
}
Document
Strongly Unambiguous Büchi Automata Are Polynomially Predictable With Membership Queries

Authors: Dana Angluin, Timos Antonopoulos, and Dana Fisman

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
A Büchi automaton is strongly unambiguous if every word w ∈ Σ^ω has at most one final path. Many properties of strongly unambiguous Büchi automata (SUBAs) are known. They are fully expressive: every regular ω-language can be represented by a SUBA. Equivalence and containment of SUBAs can be decided in polynomial time. SUBAs may be exponentially smaller than deterministic Muller automata and may be exponentially bigger than deterministic Büchi automata. In this work we show that SUBAs can be learned in polynomial time using membership and certain non-proper equivalence queries, which implies that they are polynomially predictable with membership queries. In contrast, under plausible cryptographic assumptions, non-deterministic Büchi automata are not polynomially predictable with membership queries.

Cite as

Dana Angluin, Timos Antonopoulos, and Dana Fisman. Strongly Unambiguous Büchi Automata Are Polynomially Predictable With Membership Queries. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{angluin_et_al:LIPIcs.CSL.2020.8,
  author =	{Angluin, Dana and Antonopoulos, Timos and Fisman, Dana},
  title =	{{Strongly Unambiguous B\"{u}chi Automata Are Polynomially Predictable With Membership Queries}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.8},
  URN =		{urn:nbn:de:0030-drops-116519},
  doi =		{10.4230/LIPIcs.CSL.2020.8},
  annote =	{Keywords: Polynomially predictable languages, Automata learning, Strongly unambiguous B\"{u}chi automata, Automata succinctness, Regular \omega-languages, Grammatical inference}
}
Document
Query Learning of Derived Omega-Tree Languages in Polynomial Time

Authors: Dana Angluin, Timos Antonopoulos, and Dana Fisman

Published in: LIPIcs, Volume 82, 26th EACSL Annual Conference on Computer Science Logic (CSL 2017)


Abstract
We present the first polynomial time algorithm to learn nontrivial classes of languages of infinite trees. Specifically, our algorithm uses membership and equivalence queries to learn classes of omega-tree languages derived from weak regular omega-word languages in polynomial time. The method is a general polynomial time reduction of learning a class of derived omega-tree languages to learning the underlying class of omega-word languages, for any class of omega-word languages recognized by a deterministic Büchi acceptor. Our reduction, combined with the polynomial time learning algorithm of Maler and Pnueli [Maler and Pneuli, Inform. Comput., 1995] for the class of weak regular omega-word languages yields the main result. We also show that subset queries that return counterexamples can be implemented in polynomial time using subset queries that return no counterexamples for deterministic or non-deterministic finite word acceptors, and deterministic or non-deterministic Büchi omega-word acceptors. A previous claim of an algorithm to learn regular omega-trees due to Jayasrirani, Begam and Thomas [Jayasrirani et al., ICGI, 2008] is unfortunately incorrect, as shown in [Angluin, YALEU/DCS/TR-1528, 2016].

Cite as

Dana Angluin, Timos Antonopoulos, and Dana Fisman. Query Learning of Derived Omega-Tree Languages in Polynomial Time. In 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 82, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{angluin_et_al:LIPIcs.CSL.2017.10,
  author =	{Angluin, Dana and Antonopoulos, Timos and Fisman, Dana},
  title =	{{Query Learning of Derived Omega-Tree Languages in Polynomial Time}},
  booktitle =	{26th EACSL Annual Conference on Computer Science Logic (CSL 2017)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-045-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{82},
  editor =	{Goranko, Valentin and Dam, Mads},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2017.10},
  URN =		{urn:nbn:de:0030-drops-77022},
  doi =		{10.4230/LIPIcs.CSL.2017.10},
  annote =	{Keywords: Learning, queries, infinite trees, derived tree languages, reactive systems}
}
  • Refine by Type
  • 5 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2020
  • 1 2017

  • Refine by Author
  • 2 Angluin, Dana
  • 2 Antonopoulos, Timos
  • 2 Fisman, Dana
  • 2 Piskac, Ruzica
  • 1 Akshay, S.
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs

  • Refine by Classification
  • 2 Security and privacy → Logic and verification
  • 1 Theory of computation
  • 1 Theory of computation → Automata over infinite objects
  • 1 Theory of computation → Verification by model checking

  • Refine by Keyword
  • 2 Privacy-preserving reasoning
  • 2 Propositional unsatisfiability
  • 2 SAT solving
  • 2 Zero-knowledge proofs
  • 1 Automata learning
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail