3 Search Results for "Clause, Nate"


Document
Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent

Authors: Mathieu Carrière, Seunghyun Kim, and Woojin Kim

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The generalized persistence diagram (GPD) is a natural extension of the classical persistence barcode to the setting of multi-parameter persistence and beyond. The GPD is defined as an integer-valued function whose domain is the set of intervals in the indexing poset of a persistence module, and is known to be able to capture richer topological information than its single-parameter counterpart. However, computing the GPD is computationally prohibitive due to the sheer size of the interval set. Restricting the GPD to a subset of intervals provides a way to manage this complexity, compromising discriminating power to some extent. However, identifying and computing an effective restriction of the domain that minimizes the loss of discriminating power remains an open challenge. In this work, we introduce a novel method for optimizing the domain of the GPD through gradient descent optimization. To achieve this, we introduce a loss function tailored to optimize the selection of intervals, balancing computational efficiency and discriminative accuracy. The design of the loss function is based on the known erosion stability property of the GPD. We showcase the efficiency of our sparsification method for dataset classification in supervised machine learning. Experimental results demonstrate that our sparsification method significantly reduces the time required for computing the GPDs associated to several datasets, while maintaining classification accuracies comparable to those achieved using full GPDs. Our method thus opens the way for the use of GPD-based methods to applications at an unprecedented scale.

Cite as

Mathieu Carrière, Seunghyun Kim, and Woojin Kim. Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carriere_et_al:LIPIcs.SoCG.2025.29,
  author =	{Carri\`{e}re, Mathieu and Kim, Seunghyun and Kim, Woojin},
  title =	{{Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.29},
  URN =		{urn:nbn:de:0030-drops-231810},
  doi =		{10.4230/LIPIcs.SoCG.2025.29},
  annote =	{Keywords: Multi-parameter persistent homology, Generalized persistence diagram, Generalized rank invariant, Non-convex optimization, Gradient descent}
}
Document
Super-Polynomial Growth of the Generalized Persistence Diagram

Authors: Donghan Kim, Woojin Kim, and Wonjun Lee

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The Generalized Persistence Diagram (GPD) for multi-parameter persistence naturally extends the classical notion of persistence diagram for one-parameter persistence. However, unlike its classical counterpart, computing the GPD remains a significant challenge. The main hurdle is that, while the GPD is defined as the Möbius inversion of the Generalized Rank Invariant (GRI), computing the GRI is intractable due to the formidable size of its domain, i.e., the set of all connected and convex subsets in a finite grid in ℝ^d with d ≥ 2. This computational intractability suggests seeking alternative approaches to computing the GPD. In order to study the complexity associated to computing the GPD, it is useful to consider its classical one-parameter counterpart, where for a filtration of a simplicial complex with n simplices, its persistence diagram contains at most n points. This observation leads to the question: Given a d-parameter simplicial filtration, could the cardinality of its GPD (specifically, the support of the GPD) also be bounded by a polynomial in the number of simplices in the filtration? This is the case for d = 1, where we compute the persistence diagram directly at the simplicial filtration level. If this were also the case for d ≥ 2, it might be possible to compute the GPD directly and much more efficiently without relying on the GRI. We show that the answer to the question above is negative, demonstrating the inherent difficulty of computing the GPD. More specifically, we construct a sequence of d-parameter simplicial filtrations where the cardinalities of their GPDs are not bounded by any polynomial in the number of simplices. Furthermore, we show that several commonly used methods for constructing multi-parameter filtrations can give rise to such "wild" filtrations.

Cite as

Donghan Kim, Woojin Kim, and Wonjun Lee. Super-Polynomial Growth of the Generalized Persistence Diagram. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.SoCG.2025.64,
  author =	{Kim, Donghan and Kim, Woojin and Lee, Wonjun},
  title =	{{Super-Polynomial Growth of the Generalized Persistence Diagram}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.64},
  URN =		{urn:nbn:de:0030-drops-232162},
  doi =		{10.4230/LIPIcs.SoCG.2025.64},
  annote =	{Keywords: Persistent homology, M\"{o}bius inversion, Multiparameter persistence, Generalized persistence diagram, Generalized rank invariant}
}
Document
Meta-Diagrams for 2-Parameter Persistence

Authors: Nate Clause, Tamal K. Dey, Facundo Mémoli, and Bei Wang

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We first introduce the notion of meta-rank for a 2-parameter persistence module, an invariant that captures the information behind images of morphisms between 1D slices of the module. We then define the meta-diagram of a 2-parameter persistence module to be the Möbius inversion of the meta-rank, resulting in a function that takes values from signed 1-parameter persistence modules. We show that the meta-rank and meta-diagram contain information equivalent to the rank invariant and the signed barcode. This equivalence leads to computational benefits, as we introduce an algorithm for computing the meta-rank and meta-diagram of a 2-parameter module M indexed by a bifiltration of n simplices in O(n³) time. This implies an improvement upon the existing algorithm for computing the signed barcode, which has O(n⁴) time complexity. This also allows us to improve the existing upper bound on the number of rectangles in the rank decomposition of M from O(n⁴) to O(n³). In addition, we define notions of erosion distance between meta-ranks and between meta-diagrams, and show that under these distances, meta-ranks and meta-diagrams are stable with respect to the interleaving distance. Lastly, the meta-diagram can be visualized in an intuitive fashion as a persistence diagram of diagrams, which generalizes the well-understood persistence diagram in the 1-parameter setting.

Cite as

Nate Clause, Tamal K. Dey, Facundo Mémoli, and Bei Wang. Meta-Diagrams for 2-Parameter Persistence. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{clause_et_al:LIPIcs.SoCG.2023.25,
  author =	{Clause, Nate and Dey, Tamal K. and M\'{e}moli, Facundo and Wang, Bei},
  title =	{{Meta-Diagrams for 2-Parameter Persistence}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.25},
  URN =		{urn:nbn:de:0030-drops-178754},
  doi =		{10.4230/LIPIcs.SoCG.2023.25},
  annote =	{Keywords: Multiparameter persistence modules, persistent homology, M\"{o}bius inversion, barcodes, computational topology, topological data analysis}
}
  • Refine by Type
  • 3 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2023

  • Refine by Author
  • 2 Kim, Woojin
  • 1 Carrière, Mathieu
  • 1 Clause, Nate
  • 1 Dey, Tamal K.
  • 1 Kim, Donghan
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs

  • Refine by Classification
  • 2 Mathematics of computing → Algebraic topology
  • 1 Mathematics of computing → Topology
  • 1 Theory of computation
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Nonconvex optimization

  • Refine by Keyword
  • 2 Generalized persistence diagram
  • 2 Generalized rank invariant
  • 2 Möbius inversion
  • 1 Gradient descent
  • 1 Multi-parameter persistent homology
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail