3 Search Results for "Golubev, Konstantin"


Document
RANDOM
Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications

Authors: Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We consider random walks on "balanced multislices" of any "grid" that respects the "symmetries" of the grid, and show that a broad class of such walks are good spectral expanders. (A grid is a set of points of the form 𝒮ⁿ for finite 𝒮, and a balanced multi-slice is the subset that contains an equal number of coordinates taking every value in 𝒮. A walk respects symmetries if the probability of going from u = (u_1,…,u_n) to v = (v_1,…,v_n) is invariant under simultaneous permutations of the coordinates of u and v.) Our main theorem shows that, under some technical conditions, every such walk where a single step leads to an almost 𝒪(1)-wise independent distribution on the next state, conditioned on the previous state, satisfies a non-trivially small singular value bound. We give two applications of our theorem to error-correcting codes: (1) We give an analog of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbitrary grid 𝒮ⁿ to an Abelian group, correcting from a near-optimal (1/|𝒮|^d - ε) fraction of errors for every ε > 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a function that depends on only d of the n variables). Our proofs are obtained by exploring the representation theory of the symmetric group and merging it with some careful spectral analysis.

Cite as

Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan. Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 34:1-34:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.APPROX/RANDOM.2025.34,
  author =	{Amireddy, Prashanth and Behera, Amik Raj and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{34:1--34:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  URN =		{urn:nbn:de:0030-drops-244004},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  annote =	{Keywords: Markov Chains, Random Walk, Multislices, Representation Theory of Symmetric Group, Local Correction, Low-degree Polynomials, Polynomial Distance Lemma}
}
Document
New Direct Sum Tests

Authors: Alek Westover, Edward Yu, and Kai Zhe Zheng

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A function f:[n]^{d} → 𝔽₂ is a direct sum if there are functions L_i:[n] → 𝔽₂ such that f(x) = ∑_i L_i(x_i). In this work we give multiple results related to the property testing of direct sums. Our first result concerns a test proposed by Dinur and Golubev in [Dinur and Golubev, 2019]. We call their test the Diamond test and show that it is indeed a direct sum tester. More specifically, we show that if a function f is ε-far from being a direct sum function, then the Diamond test rejects f with probability at least Ω_{n,ε}(1). Even in the case of n = 2, the Diamond test is, to the best of our knowledge, novel and yields a new tester for the classic property of affinity. Apart from the Diamond test, we also analyze a broad family of direct sum tests, which at a high level, run an arbitrary affinity test on the restriction of f to a random hypercube inside of [n]^d. This family of tests includes the direct sum test analyzed in [Dinur and Golubev, 2019], but does not include the Diamond test. As an application of our result, we obtain a direct sum test which works in the online adversary model of [Iden Kalemaj et al., 2022]. Finally, we also discuss a Fourier analytic interpretation of the diamond tester in the n = 2 case, as well as prove local correction results for direct sum as conjectured by [Dinur and Golubev, 2019].

Cite as

Alek Westover, Edward Yu, and Kai Zhe Zheng. New Direct Sum Tests. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 94:1-94:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{westover_et_al:LIPIcs.ITCS.2025.94,
  author =	{Westover, Alek and Yu, Edward and Zheng, Kai Zhe},
  title =	{{New Direct Sum Tests}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{94:1--94:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.94},
  URN =		{urn:nbn:de:0030-drops-227229},
  doi =		{10.4230/LIPIcs.ITCS.2025.94},
  annote =	{Keywords: Linearity testing, Direct sum, Grids}
}
Document
RANDOM
Direct Sum Testing: The General Case

Authors: Irit Dinur and Konstantin Golubev

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
A function f:[n_1] x ... x[n_d]->F_2 is a direct sum if it is of the form f (a_1,...,a_d) = f_1(a_1) oplus ... oplus f_d (a_d), for some d functions f_i:[n_i]->F_2 for all i=1,..., d, and where n_1,...,n_d in N. We present a 4-query test which distinguishes between direct sums and functions that are far from them. The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on the direct product test constructed by Dinur & Steurer (2014). We also present a different test, which queries the function (d+1) times, but is easier to analyze. In multiplicative +/- 1 notation, this reads as follows. A d-dimensional tensor with +/- 1 entries is called a tensor product if it is a tensor product of d vectors with +/- 1 entries, or equivalently, if it is of rank 1. The presented tests can be read as tests for distinguishing between tensor products and tensors that are far from being tensor products.

Cite as

Irit Dinur and Konstantin Golubev. Direct Sum Testing: The General Case. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 40:1-40:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dinur_et_al:LIPIcs.APPROX-RANDOM.2019.40,
  author =	{Dinur, Irit and Golubev, Konstantin},
  title =	{{Direct Sum Testing: The General Case}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{40:1--40:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.40},
  URN =		{urn:nbn:de:0030-drops-112554},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.40},
  annote =	{Keywords: property testing, direct sum, tensor product}
}
  • Refine by Type
  • 3 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2019

  • Refine by Author
  • 1 Amireddy, Prashanth
  • 1 Behera, Amik Raj
  • 1 Dinur, Irit
  • 1 Golubev, Konstantin
  • 1 Srinivasan, Srikanth
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs

  • Refine by Classification
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Random walks and Markov chains

  • Refine by Keyword
  • 1 Direct sum
  • 1 Grids
  • 1 Linearity testing
  • 1 Local Correction
  • 1 Low-degree Polynomials
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail