Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)
Ricardo Rivera Cardoso, Alex Meiburg, and Daniel Nagaj. Quantum SAT Problems with Finite Sets of Projectors Are Complete for a Plethora of Classes. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{riveracardoso_et_al:LIPIcs.TQC.2025.6,
author = {Rivera Cardoso, Ricardo and Meiburg, Alex and Nagaj, Daniel},
title = {{Quantum SAT Problems with Finite Sets of Projectors Are Complete for a Plethora of Classes}},
booktitle = {20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
pages = {6:1--6:24},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-392-8},
ISSN = {1868-8969},
year = {2025},
volume = {350},
editor = {Fefferman, Bill},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.6},
URN = {urn:nbn:de:0030-drops-240557},
doi = {10.4230/LIPIcs.TQC.2025.6},
annote = {Keywords: Quantum complexity theory, quantum satisfiability, circuit-to-Hamiltonian, pairwise union of classes, pairwise intersection of classes}
}
Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Markus Bläser, Julian Dörfler, Maciej Liśkiewicz, and Benito van der Zander. Probabilistic and Causal Satisfiability: Constraining the Model. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 144:1-144:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{blaser_et_al:LIPIcs.ICALP.2025.144,
author = {Bl\"{a}ser, Markus and D\"{o}rfler, Julian and Li\'{s}kiewicz, Maciej and van der Zander, Benito},
title = {{Probabilistic and Causal Satisfiability: Constraining the Model}},
booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
pages = {144:1--144:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-372-0},
ISSN = {1868-8969},
year = {2025},
volume = {334},
editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.144},
URN = {urn:nbn:de:0030-drops-235214},
doi = {10.4230/LIPIcs.ICALP.2025.144},
annote = {Keywords: Existential theory of the real numbers, Computational complexity, Probabilistic logic, Structural Causal Models}
}
Published in: Dagstuhl Seminar Proceedings, Volume 9401, Machine learning approaches to statistical dependences and causality (2010)
Dominik Janzing, Steffen Lauritzen, and Bernhard Schölkopf. 09401 Abstracts Collection – Machine learning approaches to statistical dependences and causality. In Machine learning approaches to statistical dependences and causality. Dagstuhl Seminar Proceedings, Volume 9401, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)
@InProceedings{janzing_et_al:DagSemProc.09401.1,
author = {Janzing, Dominik and Lauritzen, Steffen and Sch\"{o}lkopf, Bernhard},
title = {{09401 Abstracts Collection – Machine learning approaches to statistical dependences and causality }},
booktitle = {Machine learning approaches to statistical dependences and causality},
pages = {1--15},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2010},
volume = {9401},
editor = {Dominik Janzing and Steffen Lauritzen and Bernhard Sch\"{o}lkopf},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09401.1},
URN = {urn:nbn:de:0030-drops-23636},
doi = {10.4230/DagSemProc.09401.1},
annote = {Keywords: Machine learning, statistical dependences, causality}
}