5 Search Results for "Linker, Sven"


Document
On Minimizing Wiggle in Stacked Area Charts

Authors: Alexander Dobler and Martin Nöllenburg

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Stacked area charts are a widely used visualization technique for numerical time series. The x-axis represents time, and the time series are displayed as horizontal, variable-height layers stacked on top of each other. The height of each layer corresponds to the time series values at each time point. The main aesthetic criterion for optimizing the readability of stacked area charts is the amount of vertical change of the borders between the time series in the visualization, called wiggle. While many heuristic algorithms have been developed to minimize wiggle, the computational complexity of minimizing wiggle has not been formally analyzed. In this paper, we show that different variants of wiggle minimization are NP-hard and even hard to approximate. We also present an exact mixed-integer linear programming formulation and compare its performance with a state-of-the-art heuristic in an experimental evaluation. Lastly, we consider a special case of wiggle minimization that corresponds to the fundamentally interesting and natural problem of ordering a set of numbers as to minimize their sum of absolute prefix sums. We show several complexity results for this problem that imply some of the mentioned hardness results for wiggle minimization.

Cite as

Alexander Dobler and Martin Nöllenburg. On Minimizing Wiggle in Stacked Area Charts. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dobler_et_al:LIPIcs.WADS.2025.22,
  author =	{Dobler, Alexander and N\"{o}llenburg, Martin},
  title =	{{On Minimizing Wiggle in Stacked Area Charts}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.22},
  URN =		{urn:nbn:de:0030-drops-242530},
  doi =		{10.4230/LIPIcs.WADS.2025.22},
  annote =	{Keywords: Stacked area charts, NP-hardness, Mixed-integer linear programming}
}
Document
Position
Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.

Cite as

Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 5:1-5:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{chen_et_al:TGDK.1.1.5,
  author =	{Chen, Jiaoyan and Dong, Hang and Hastings, Janna and Jim\'{e}nez-Ruiz, Ernesto and L\'{o}pez, Vanessa and Monnin, Pierre and Pesquita, Catia and \v{S}koda, Petr and Tamma, Valentina},
  title =	{{Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:33},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.5},
  URN =		{urn:nbn:de:0030-drops-194791},
  doi =		{10.4230/TGDK.1.1.5},
  annote =	{Keywords: Knowledge graphs, Life science, Knowledge discovery, Explainable AI}
}
Document
Finite Models for a Spatial Logic with Discrete and Topological Path Operators

Authors: Sven Linker, Fabio Papacchini, and Michele Sevegnani

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
This paper analyses models of a spatial logic with path operators based on the class of neighbourhood spaces, also called pretopological or closure spaces, a generalisation of topological spaces. For this purpose, we distinguish two dimensions: the type of spaces on which models are built, and the type of allowed paths. For the spaces, we investigate general neighbourhood spaces and the subclass of quasi-discrete spaces, which closely resemble graphs. For the paths, we analyse the cases of quasi-discrete paths, which consist of an enumeration of points, and topological paths, based on the unit interval. We show that the logic admits finite models over quasi-discrete spaces, both with quasi-discrete and topological paths. Finally, we prove that for general neighbourhood spaces, the logic does not have the finite model property, either for quasi-discrete or topological paths.

Cite as

Sven Linker, Fabio Papacchini, and Michele Sevegnani. Finite Models for a Spatial Logic with Discrete and Topological Path Operators. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 72:1-72:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{linker_et_al:LIPIcs.MFCS.2021.72,
  author =	{Linker, Sven and Papacchini, Fabio and Sevegnani, Michele},
  title =	{{Finite Models for a Spatial Logic with Discrete and Topological Path Operators}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{72:1--72:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.72},
  URN =		{urn:nbn:de:0030-drops-145120},
  doi =		{10.4230/LIPIcs.MFCS.2021.72},
  annote =	{Keywords: spatial logic, topology, finite models}
}
Document
Analysing Spatial Properties on Neighbourhood Spaces

Authors: Sven Linker, Fabio Papacchini, and Michele Sevegnani

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We present a bisimulation relation for neighbourhood spaces, a generalisation of topological spaces. We show that this notion, path preserving bisimulation, preserves formulas of the spatial logic SLCS. We then use this preservation result to show that SLCS cannot express standard topological properties such as separation and connectedness. Furthermore, we compare the bisimulation relation with standard modal bisimulation and modal bisimulation with converse on graphs and prove it coincides with the latter.

Cite as

Sven Linker, Fabio Papacchini, and Michele Sevegnani. Analysing Spatial Properties on Neighbourhood Spaces. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{linker_et_al:LIPIcs.MFCS.2020.66,
  author =	{Linker, Sven and Papacchini, Fabio and Sevegnani, Michele},
  title =	{{Analysing Spatial Properties on Neighbourhood Spaces}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.66},
  URN =		{urn:nbn:de:0030-drops-127352},
  doi =		{10.4230/LIPIcs.MFCS.2020.66},
  annote =	{Keywords: spatial logic, topology, bisimulation}
}
Document
Analysis of Autonomous Mobile Collectives in Complex Physical Environments (Dagstuhl Seminar 19432)

Authors: Mario Gleirscher, Anne E. Haxthausen, Martin Leucker, and Sven Linker

Published in: Dagstuhl Reports, Volume 9, Issue 10 (2020)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19432 "Analysis of Autonomous Mobile Collectives in Complex Physical Environments". Our working hypothesis for this seminar was that for systems of such complexity and criticality, the trustworthy certification and the successful operation in society will strongly benefit from the coordinated application of several rigorous engineering methods and formal analysis techniques. In this context, we discussed the state-of-the-art based on the working example of a Smart Farm. Our aim was to understand the practical challenges and the capabilities and limitations of recent formal modelling and analysis techniques when tackling these challenges, and to initiate a special research community on the verification of autonomous collectives.

Cite as

Mario Gleirscher, Anne E. Haxthausen, Martin Leucker, and Sven Linker. Analysis of Autonomous Mobile Collectives in Complex Physical Environments (Dagstuhl Seminar 19432). In Dagstuhl Reports, Volume 9, Issue 10, pp. 95-116, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{gleirscher_et_al:DagRep.9.10.95,
  author =	{Gleirscher, Mario and Haxthausen, Anne E. and Leucker, Martin and Linker, Sven},
  title =	{{Analysis of Autonomous Mobile Collectives in Complex Physical Environments (Dagstuhl Seminar 19432)}},
  pages =	{95--116},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{9},
  number =	{10},
  editor =	{Gleirscher, Mario and Haxthausen, Anne E. and Leucker, Martin and Linker, Sven},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.9.10.95},
  URN =		{urn:nbn:de:0030-drops-118579},
  doi =		{10.4230/DagRep.9.10.95},
  annote =	{Keywords: autonomous collectives, control engineering, formal verification, hybrid systems, uncertainty and risk}
}
  • Refine by Type
  • 5 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2023
  • 1 2021
  • 2 2020

  • Refine by Author
  • 3 Linker, Sven
  • 2 Papacchini, Fabio
  • 2 Sevegnani, Michele
  • 1 Chen, Jiaoyan
  • 1 Dobler, Alexander
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 1 TGDK
  • 1 DagRep

  • Refine by Classification
  • 2 Mathematics of computing → Topology
  • 2 Theory of computation → Modal and temporal logics
  • 1 Applied computing → Life and medical sciences
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Graph-based database models
  • Show More...

  • Refine by Keyword
  • 2 spatial logic
  • 2 topology
  • 1 Explainable AI
  • 1 Knowledge discovery
  • 1 Knowledge graphs
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail