2 Search Results for "Parikh, Parth"


Document
A Sparse Multicover Bifiltration of Linear Size

Authors: Ángel Javier Alonso

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The k-cover of a point cloud X of ℝ^d at radius r is the set of all those points within distance r of at least k points of X. By varying r and k we obtain a two-parameter filtration known as the multicover bifiltration. This bifiltration has received attention recently due to being choice-free and robust to outliers. However, it is hard to compute: the smallest known equivalent simplicial bifiltration has O(|X|^{d+1}) simplices. In this paper we introduce a (1+ε)-approximation of the multicover bifiltration of linear size O(|X|), for fixed d and ε. The methods also apply to the subdivision Rips bifiltration on metric spaces of bounded doubling dimension yielding analogous results.

Cite as

Ángel Javier Alonso. A Sparse Multicover Bifiltration of Linear Size. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alonso:LIPIcs.SoCG.2025.6,
  author =	{Alonso, \'{A}ngel Javier},
  title =	{{A Sparse Multicover Bifiltration of Linear Size}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.6},
  URN =		{urn:nbn:de:0030-drops-231587},
  doi =		{10.4230/LIPIcs.SoCG.2025.6},
  annote =	{Keywords: Multicover, Approximation, Sparsification, Multiparameter persistence}
}
Document
Media Exposition
Greedy Permutations and Finite Voronoi Diagrams (Media Exposition)

Authors: Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and Siddharth S. Sheth

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The greedy permutation is computed in O(nlog Δ) time for low-dimensional data using this method [Sariel Har-Peled and Manor Mendel, 2006; Donald R. Sheehy, 2020].

Cite as

Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and Siddharth S. Sheth. Greedy Permutations and Finite Voronoi Diagrams (Media Exposition). In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 64:1-64:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chubet_et_al:LIPIcs.SoCG.2023.64,
  author =	{Chubet, Oliver A. and Macnichol, Paul and Parikh, Parth and Sheehy, Donald R. and Sheth, Siddharth S.},
  title =	{{Greedy Permutations and Finite Voronoi Diagrams}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{64:1--64:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.64},
  URN =		{urn:nbn:de:0030-drops-179146},
  doi =		{10.4230/LIPIcs.SoCG.2023.64},
  annote =	{Keywords: greedy permutation, Voronoi diagrams}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2023

  • Refine by Author
  • 1 Alonso, Ángel Javier
  • 1 Chubet, Oliver A.
  • 1 Macnichol, Paul
  • 1 Parikh, Parth
  • 1 Sheehy, Donald R.
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Computational geometry
  • 1 Mathematics of computing → Topology

  • Refine by Keyword
  • 1 Approximation
  • 1 Multicover
  • 1 Multiparameter persistence
  • 1 Sparsification
  • 1 Voronoi diagrams
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail