2 Search Results for "Pernsteiner, Stuart"


Document
Practical Type-Based Taint Checking and Inference

Authors: Nima Karimipour, Kanak Das, Manu Sridharan, and Behnaz Hassanshahi

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Many important security properties can be formulated in terms of flows of tainted data, and improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses use whole-program static analysis, leading to scalability challenges. Type-based checking is a promising alternative, as it enables modular and incremental checking for fast performance. However, type-based approaches have not been widely adopted in practice, due to challenges with false positives and annotating existing codebases. In this paper, we present a new approach to type-based checking of taint properties that addresses these challenges, based on two key techniques. First, we present a new type-based tainting checker with significantly reduced false positives, via more practical handling of third-party libraries and other language constructs. Second, we present a novel technique to automatically infer tainting type qualifiers for existing code. Our technique supports inference of generic type argument annotations, crucial for tainting properties. We implemented our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and 2.93X-22.9X faster checking time. Further, TaintTyper infers annotations comparable to those written by hand, suitable for insertion into source code. TaintTyper is a promising new approach to efficient and practical taint checking.

Cite as

Nima Karimipour, Kanak Das, Manu Sridharan, and Behnaz Hassanshahi. Practical Type-Based Taint Checking and Inference. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 18:1-18:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karimipour_et_al:LIPIcs.ECOOP.2025.18,
  author =	{Karimipour, Nima and Das, Kanak and Sridharan, Manu and Hassanshahi, Behnaz},
  title =	{{Practical Type-Based Taint Checking and Inference}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{18:1--18:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233119},
  doi =		{10.4230/LIPIcs.ECOOP.2025.18},
  annote =	{Keywords: Static analysis, Taint Analysis, Pluggable type systems, Security, Inference}
}
Document
Toward a Dependability Case Language and Workflow for a Radiation Therapy System

Authors: Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
We present a near-future research agenda for bringing a suite of modern programming-languages verification tools - specifically interactive theorem proving, solver-aided languages, and formally defined domain-specific languages - to the development of a specific safety-critical system, a radiotherapy medical device. We sketch how we believe recent programming-languages research advances can merge with existing best practices for safety-critical systems to increase system assurance and developer productivity. We motivate hypotheses central to our agenda: That we should start with a single specific system and that we need to integrate a variety of complementary verification and synthesis tools into system development.

Cite as

Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang. Toward a Dependability Case Language and Workflow for a Radiation Therapy System. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 103-112, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{ernst_et_al:LIPIcs.SNAPL.2015.103,
  author =	{Ernst, Michael D. and Grossman, Dan and Jacky, Jon and Loncaric, Calvin and Pernsteiner, Stuart and Tatlock, Zachary and Torlak, Emina and Wang, Xi},
  title =	{{Toward a Dependability Case Language and Workflow for a Radiation Therapy System}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{103--112},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.103},
  URN =		{urn:nbn:de:0030-drops-50208},
  doi =		{10.4230/LIPIcs.SNAPL.2015.103},
  annote =	{Keywords: Synthesis, Proof Assistants, Verification, Dependability Cases, Domain Specific Languages, Radiation Therapy}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2015

  • Refine by Author
  • 1 Das, Kanak
  • 1 Ernst, Michael D.
  • 1 Grossman, Dan
  • 1 Hassanshahi, Behnaz
  • 1 Jacky, Jon
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 1 Security and privacy → Software security engineering
  • 1 Software and its engineering → Software verification and validation

  • Refine by Keyword
  • 1 Dependability Cases
  • 1 Domain Specific Languages
  • 1 Inference
  • 1 Pluggable type systems
  • 1 Proof Assistants
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail