4 Search Results for "Peyerimhoff, Norbert"


Document
APPROX
Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs

Authors: Tommaso d'Orsi, Chris Jones, Jake Ruotolo, Salil Vadhan, and Jiyu Zhang

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Whether or not the Sparsest Cut problem admits an efficient O(1)-approximation algorithm is a fundamental algorithmic question with connections to geometry and the Unique Games Conjecture. Revisiting spectral algorithms for Sparsest Cut, we present a novel, simple algorithm that combines eigenspace enumeration with a new algorithm for the Cut Improvement problem. The runtime of our algorithm is parametrized by a quantity that we call the solution dimension SD_ε(G): the smallest k such that the subspace spanned by the first k Laplacian eigenvectors contains all but ε fraction of a sparsest cut. Our algorithm matches the guarantees of prior methods based on the threshold-rank paradigm, while also extending beyond them. To illustrate this, we study its performance on low degree Cayley graphs over Abelian groups - canonical examples of graphs with poor expansion properties. We prove that low degree Abelian Cayley graphs have small solution dimension, yielding an algorithm that computes a (1+ε)-approximation to the uniform Sparsest Cut of a degree-d Cayley graph over an Abelian group of size n in time n^O(1) ⋅ exp{(d/ε)^O(d)}. Along the way to bounding the solution dimension of Abelian Cayley graphs, we analyze their sparse cuts and spectra, proving that the collection of O(1)-approximate sparsest cuts has an ε-net of size exp{(d/ε)^O(d)} and that the multiplicity of λ₂ is bounded by 2^O(d). The latter bound is tight and improves on a previous bound of 2^O(d²) by Lee and Makarychev.

Cite as

Tommaso d'Orsi, Chris Jones, Jake Ruotolo, Salil Vadhan, and Jiyu Zhang. Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dorsi_et_al:LIPIcs.APPROX/RANDOM.2025.16,
  author =	{d'Orsi, Tommaso and Jones, Chris and Ruotolo, Jake and Vadhan, Salil and Zhang, Jiyu},
  title =	{{Sparsest Cut and Eigenvalue Multiplicities on Low Degree Abelian Cayley Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.16},
  URN =		{urn:nbn:de:0030-drops-243827},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.16},
  annote =	{Keywords: Sparsest Cut, Spectral Graph Theory, Cayley Graphs, Approximation Algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Parameterised Holant Problems

Authors: Panagiotis Aivasiliotis, Andreas Göbel, Marc Roth, and Johannes Schmitt

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We investigate the complexity of parameterised holant problems p-Holant(𝒮) for families of symmetric signatures 𝒮. The parameterised holant framework has been introduced by Curticapean in 2015 as a counter-part to the classical and well-established theory of holographic reductions and algorithms, and it constitutes an extensive family of coloured and weighted counting constraint satisfaction problems on graph-like structures, encoding as special cases various well-studied counting problems in parameterised and fine-grained complexity theory such as counting edge-colourful k-matchings, graph-factors, Eulerian orientations or, more generally, subgraphs with weighted degree constraints. We establish an exhaustive complexity trichotomy along the set of signatures 𝒮: Depending on the signatures, p-Holant(𝒮) is either 1) solvable in "FPT-near-linear time", i.e., in time f(k)⋅ 𝒪̃(|x|), or 2) solvable in "FPT-matrix-multiplication time", i.e., in time f(k)⋅ {𝒪}(n^{ω}), where n is the number of vertices of the underlying graph, but not solvable in FPT-near-linear time, unless the Triangle Conjecture fails, or 3) #W[1]-complete and no significant improvement over the naive brute force algorithm is possible unless the Exponential Time Hypothesis fails. This classification reveals a significant and surprising gap in the complexity landscape of parameterised Holants: Not only is every instance either fixed-parameter tractable or #W[1]-complete, but additionally, every FPT instance is solvable in time (at most) f(k)⋅ {𝒪}(n^{ω}). We show that there are infinitely many instances of each of the types; for example, all constant signatures yield holant problems of type (1), and the problem of counting edge-colourful k-matchings modulo p is of type (p) for p ∈ {2,3}. Finally, we also establish a complete classification for a natural uncoloured version of parameterised holant problem p-UnColHolant(𝒮), which encodes as special cases the non-coloured analogues of the aforementioned examples. We show that the complexity of p-UnColHolant(𝒮) is different: Depending on 𝒮 all instances are either solvable in FPT-near-linear time, or #W[1]-complete, that is, there are no instances of type (2).

Cite as

Panagiotis Aivasiliotis, Andreas Göbel, Marc Roth, and Johannes Schmitt. Parameterised Holant Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aivasiliotis_et_al:LIPIcs.ICALP.2025.7,
  author =	{Aivasiliotis, Panagiotis and G\"{o}bel, Andreas and Roth, Marc and Schmitt, Johannes},
  title =	{{Parameterised Holant Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.7},
  URN =		{urn:nbn:de:0030-drops-233842},
  doi =		{10.4230/LIPIcs.ICALP.2025.7},
  annote =	{Keywords: holant problems, counting problems, parameterised algorithms, fine-grained complexity theory, homomorphisms}
}
Document
Parameterized (Modular) Counting and Cayley Graph Expanders

Authors: Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, and Alina Vdovina

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the problem #EdgeSub(Φ) of counting k-edge subgraphs satisfying a given graph property Φ in a large host graph G. Building upon the breakthrough result of Curticapean, Dell and Marx (STOC 17), we express the number of such subgraphs as a finite linear combination of graph homomorphism counts and derive the complexity of computing this number by studying its coefficients. Our approach relies on novel constructions of low-degree Cayley graph expanders of p-groups, which might be of independent interest. The properties of those expanders allow us to analyse the coefficients in the aforementioned linear combinations over the field 𝔽_p which gives us significantly more control over the cancellation behaviour of the coefficients. Our main result is an exhaustive and fine-grained complexity classification of #EdgeSub(Φ) for minor-closed properties Φ, closing the missing gap in previous work by Roth, Schmitt and Wellnitz (ICALP 21). Additionally, we observe that our methods also apply to modular counting. Among others, we obtain novel intractability results for the problems of counting k-forests and matroid bases modulo a prime p. Furthermore, from an algorithmic point of view, we construct algorithms for the problems of counting k-paths and k-cycles modulo 2 that outperform the best known algorithms for their non-modular counterparts. In the course of our investigations we also provide an exhaustive parameterized complexity classification for the problem of counting graph homomorphisms modulo a prime p.

Cite as

Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, and Alina Vdovina. Parameterized (Modular) Counting and Cayley Graph Expanders. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 84:1-84:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{peyerimhoff_et_al:LIPIcs.MFCS.2021.84,
  author =	{Peyerimhoff, Norbert and Roth, Marc and Schmitt, Johannes and Stix, Jakob and Vdovina, Alina},
  title =	{{Parameterized (Modular) Counting and Cayley Graph Expanders}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{84:1--84:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.84},
  URN =		{urn:nbn:de:0030-drops-145246},
  doi =		{10.4230/LIPIcs.MFCS.2021.84},
  annote =	{Keywords: Cayley graphs, counting complexity, expander graphs, fine-grained complexity, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Detecting and Counting Small Subgraphs, and Evaluating a Parameterized Tutte Polynomial: Lower Bounds via Toroidal Grids and Cayley Graph Expanders

Authors: Marc Roth, Johannes Schmitt, and Philip Wellnitz

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Given a graph property Φ, we consider the problem EdgeSub(Φ), where the input is a pair of a graph G and a positive integer k, and the task is to decide whether G contains a k-edge subgraph that satisfies Φ. Specifically, we study the parameterized complexity of EdgeSub(Φ) and of its counting problem #EdgeSub(Φ) with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties Φ: the decision problem EdgeSub(Φ) always admits an FPT ("fixed-parameter tractable") algorithm and the counting problem #EdgeSub(Φ) always admits an FPTRAS ("fixed-parameter tractable randomized approximation scheme"). For exact counting, we present an exhaustive and explicit criterion on the property Φ which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for #EdgeSub(Φ) that run in time f(k)⋅ |G|^{o(k/log k)} for any computable function f. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Φ). This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). This approach does not only apply to #EdgeSub(Φ) but also to the more general problem of computing weighted linear combinations of subgraph counts. As a special case of such a linear combination, we introduce a parameterized variant of the Tutte Polynomial T^k_G of a graph G, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, T^k_G(2,1) corresponds to the number of k-forests in the graph G. Our techniques allow us to completely understand the parameterized complexity of computing the evaluation of T^k_G at every pair of rational coordinates (x,y). In particular, our results give a new proof for the #W[1]-hardness of the problem of counting k-forests in a graph.

Cite as

Marc Roth, Johannes Schmitt, and Philip Wellnitz. Detecting and Counting Small Subgraphs, and Evaluating a Parameterized Tutte Polynomial: Lower Bounds via Toroidal Grids and Cayley Graph Expanders. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 108:1-108:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{roth_et_al:LIPIcs.ICALP.2021.108,
  author =	{Roth, Marc and Schmitt, Johannes and Wellnitz, Philip},
  title =	{{Detecting and Counting Small Subgraphs, and Evaluating a Parameterized Tutte Polynomial: Lower Bounds via Toroidal Grids and Cayley Graph Expanders}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{108:1--108:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.108},
  URN =		{urn:nbn:de:0030-drops-141778},
  doi =		{10.4230/LIPIcs.ICALP.2021.108},
  annote =	{Keywords: Counting complexity, parameterized complexity, Tutte polynomial}
}
  • Refine by Type
  • 4 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 2 2021

  • Refine by Author
  • 3 Roth, Marc
  • 3 Schmitt, Johannes
  • 1 Aivasiliotis, Panagiotis
  • 1 Göbel, Andreas
  • 1 Jones, Chris
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Problems, reductions and completeness
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Graph theory
  • Show More...

  • Refine by Keyword
  • 2 parameterized complexity
  • 1 Approximation Algorithms
  • 1 Cayley Graphs
  • 1 Cayley graphs
  • 1 Counting complexity
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail