2 Search Results for "Piessens, Frank"


Document
Abstract Congruence Criteria for Weak Bisimilarity

Authors: Stelios Tsampas, Christian Williams, Andreas Nuyts, Dominique Devriese, and Frank Piessens

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We introduce three general compositionality criteria over operational semantics and prove that, when all three are satisfied together, they guarantee weak bisimulation being a congruence. Our work is founded upon Turi and Plotkin’s mathematical operational semantics and the coalgebraic approach to weak bisimulation by Brengos. We demonstrate each criterion with various examples of success and failure and establish a formal connection with the simply WB cool rule format of Bloom and van Glabbeek. In addition, we show that the three criteria induce lax models in the sense of Bonchi et al.

Cite as

Stelios Tsampas, Christian Williams, Andreas Nuyts, Dominique Devriese, and Frank Piessens. Abstract Congruence Criteria for Weak Bisimilarity. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 88:1-88:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{tsampas_et_al:LIPIcs.MFCS.2021.88,
  author =	{Tsampas, Stelios and Williams, Christian and Nuyts, Andreas and Devriese, Dominique and Piessens, Frank},
  title =	{{Abstract Congruence Criteria for Weak Bisimilarity}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{88:1--88:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.88},
  URN =		{urn:nbn:de:0030-drops-145281},
  doi =		{10.4230/LIPIcs.MFCS.2021.88},
  annote =	{Keywords: Structural Operational Semantics, distributive laws, weak bisimilarity}
}
Document
Secure Compilation (Dagstuhl Seminar 18201)

Authors: Amal Ahmed, Deepak Garg, Catalin Hritcu, and Frank Piessens

Published in: Dagstuhl Reports, Volume 8, Issue 5 (2019)


Abstract
Secure compilation is an emerging field that puts together advances in security, programming languages, verification, systems, and hardware architectures in order to devise secure compilation chains that eliminate many of today's vulnerabilities. Secure compilation aims to protect a source language's abstractions in compiled code, even against low-level attacks. For a concrete example, all modern languages provide a notion of structured control flow and an invoked procedure is expected to return to the right place. However, today's compilation chains (compilers, linkers, loaders, runtime systems, hardware) cannot efficiently enforce this abstraction: linked low-level code can call and return to arbitrary instructions or smash the stack, blatantly violating the high-level abstraction. The emerging secure compilation community aims to address such problems by devising formal security criteria, efficient enforcement mechanisms, and effective proof techniques. This seminar strived to take a broad and inclusive view of secure compilation and to provide a forum for discussion on the topic. The goal was to identify interesting research directions and open challenges by bringing together people working on building secure compilation chains, on developing proof techniques and verification tools, and on designing security mechanisms.

Cite as

Amal Ahmed, Deepak Garg, Catalin Hritcu, and Frank Piessens. Secure Compilation (Dagstuhl Seminar 18201). In Dagstuhl Reports, Volume 8, Issue 5, pp. 1-30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{ahmed_et_al:DagRep.8.5.1,
  author =	{Ahmed, Amal and Garg, Deepak and Hritcu, Catalin and Piessens, Frank},
  title =	{{Secure Compilation (Dagstuhl Seminar 18201)}},
  pages =	{1--30},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2018},
  volume =	{8},
  number =	{5},
  editor =	{Ahmed, Amal and Garg, Deepak and Hritcu, Catalin and Piessens, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.8.5.1},
  URN =		{urn:nbn:de:0030-drops-98911},
  doi =		{10.4230/DagRep.8.5.1},
  annote =	{Keywords: secure compilation, low-level attacks, source-level reasoning, attacker models, full abstraction, hyperproperties, enforcement mechanisms, compartmentalization, security architectures, side-channels}
}
  • Refine by Author
  • 2 Piessens, Frank
  • 1 Ahmed, Amal
  • 1 Devriese, Dominique
  • 1 Garg, Deepak
  • 1 Hritcu, Catalin
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Categorical semantics

  • Refine by Keyword
  • 1 Structural Operational Semantics
  • 1 attacker models
  • 1 compartmentalization
  • 1 distributive laws
  • 1 enforcement mechanisms
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail