3 Search Results for "Van Geffen, Jacob"


Document
Tight Bounds for Some Classical Problems Parameterized by Cutwidth

Authors: Narek Bojikian, Vera Chekan, and Stefan Kratsch

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Cutwidth is a widely studied parameter and it quantifies how well a graph can be decomposed along small edge-cuts. It complements pathwidth, which captures decomposition by small vertex separators, and it is well-known that cutwidth upper-bounds pathwidth. The SETH-tight parameterized complexity of problems on graphs of bounded pathwidth (and treewidth) has been actively studied over the past decade while for cutwidth the complexity of many classical problems remained open. For Hamiltonian Cycle, it is known that a (2+√2)^{pw} n^𝒪(1) algorithm is optimal for pathwidth under SETH [Cygan et al. JACM 2018]. Van Geffen et al. [J. Graph Algorithms Appl. 2020] and Bojikian et al. [STACS 2023] asked which running time is optimal for this problem parameterized by cutwidth. We answer this question with (1+√2)^{ctw} n^𝒪(1) by providing matching upper and lower bounds. Second, as our main technical contribution, we close the gap left by van Heck [2018] for Partition Into Triangles (and Triangle Packing) by improving both upper and lower bound and getting a tight bound of ∛{3}^{ctw} n^𝒪(1), which to our knowledge exhibits the only known tight non-integral basis apart from Hamiltonian Cycle [Cygan et al. JACM 2018] and C₄-Hitting Set [SODA 2025]. We show that the cuts inducing a disjoint union of paths of length three (unions of so-called Z-cuts) lie at the core of the complexity of the problem - usually lower-bound constructions use simpler cuts inducing either a matching or a disjoint union of bicliques. Finally, we determine the optimal running times for Max Cut (2^{ctw} n^𝒪(1)) and Induced Matching (3^{ctw} n^𝒪(1)) by providing matching lower bounds for the existing algorithms - the latter result also answers an open question for treewidth by Chaudhary and Zehavi [WG 2023].

Cite as

Narek Bojikian, Vera Chekan, and Stefan Kratsch. Tight Bounds for Some Classical Problems Parameterized by Cutwidth. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.ESA.2025.13,
  author =	{Bojikian, Narek and Chekan, Vera and Kratsch, Stefan},
  title =	{{Tight Bounds for Some Classical Problems Parameterized by Cutwidth}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.13},
  URN =		{urn:nbn:de:0030-drops-244815},
  doi =		{10.4230/LIPIcs.ESA.2025.13},
  annote =	{Keywords: Parameterized complexity, cutwidth, Hamiltonian cycle, triangle packing, max cut, induced matching}
}
Document
Bottom-Up Synthesis of Memory Mutations with Separation Logic

Authors: Kasra Ferdowsi and Hila Peleg

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Programming-by-Example (PBE) is the paradigm of program synthesis specified via input-output pairs. It is commonly used because examples are easy to provide and collect from the environment. A popular optimization for enumerative synthesis with examples is Observational Equivalence (OE), which groups programs into equivalence classes according to their evaluation on example inputs. Current formulations of OE, however, are severely limited by the assumption that the synthesizer’s target language contains only pure components with no side-effects, either enforcing this in their target language, or ignoring it, leading to an incorrect enumeration. This limits their ability to use realistic component sets. We address this limitation by borrowing from Separation Logic, which can compositionally reason about heap mutations. We reformulate PBE using a restricted Separation Logic: Concrete Heap Separation Logic (CHSL), transforming the search for programs into a proof search in CHSL. This lets us perform bottom-up enumerative synthesis without the need for expert-provided annotations or domain-specific inferences, but with three key advantages: we (i) preserve correctness in the presence of memory-mutating operations, (ii) compact the search space by representing many concrete programs as one under CHSL, and (iii) perform a provably correct OE-reduction. We present SObEq (Side-effects in OBservational EQuivalence), a bottom-up enumerative algorithm that, given a PBE task, searches for its CHSL derivation. The SObEq algorithm is proved correct with no purity assumptions: we show it is guaranteed to lose no solutions. We also evaluate our implementation of SObEq on benchmarks from the literature and online sources, and show that it produces high-quality results quickly.

Cite as

Kasra Ferdowsi and Hila Peleg. Bottom-Up Synthesis of Memory Mutations with Separation Logic. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 10:1-10:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ferdowsi_et_al:LIPIcs.ECOOP.2025.10,
  author =	{Ferdowsi, Kasra and Peleg, Hila},
  title =	{{Bottom-Up Synthesis of Memory Mutations with Separation Logic}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{10:1--10:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.10},
  URN =		{urn:nbn:de:0030-drops-233036},
  doi =		{10.4230/LIPIcs.ECOOP.2025.10},
  annote =	{Keywords: Program synthesis, observational equivalence}
}
Document
Synthesis-Aided Crash Consistency for Storage Systems

Authors: Jacob Van Geffen, Xi Wang, Emina Torlak, and James Bornholt

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
Reliable storage systems must be crash consistent - guaranteed to recover to a consistent state after a crash. Crash consistency is non-trivial as it requires maintaining complex invariants about persistent data structures in the presence of caching, reordering, and system failures. Current programming models offer little support for implementing crash consistency, forcing storage system developers to roll their own consistency mechanisms. Bugs in these mechanisms can lead to severe data loss for applications that rely on persistent storage. This paper presents a new synthesis-aided programming model for building crash-consistent storage systems. In this approach, storage systems can assume an angelic crash-consistency model, where the underlying storage stack promises to resolve crashes in favor of consistency whenever possible. To realize this model, we introduce a new labeled writes interface for developers to identify their writes to disk, and develop a program synthesis tool, DepSynth, that generates dependency rules to enforce crash consistency over these labeled writes. We evaluate our model in a case study on a production storage system at Amazon Web Services. We find that DepSynth can automate crash consistency for this complex storage system, with similar results to existing expert-written code, and can automatically identify and correct consistency and performance issues.

Cite as

Jacob Van Geffen, Xi Wang, Emina Torlak, and James Bornholt. Synthesis-Aided Crash Consistency for Storage Systems. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 35:1-35:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vangeffen_et_al:LIPIcs.ECOOP.2023.35,
  author =	{Van Geffen, Jacob and Wang, Xi and Torlak, Emina and Bornholt, James},
  title =	{{Synthesis-Aided Crash Consistency for Storage Systems}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{35:1--35:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.35},
  URN =		{urn:nbn:de:0030-drops-182285},
  doi =		{10.4230/LIPIcs.ECOOP.2023.35},
  annote =	{Keywords: program synthesis, crash consistency, file systems}
}
  • Refine by Type
  • 3 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2023

  • Refine by Author
  • 1 Bojikian, Narek
  • 1 Bornholt, James
  • 1 Chekan, Vera
  • 1 Ferdowsi, Kasra
  • 1 Kratsch, Stefan
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs

  • Refine by Classification
  • 1 Computer systems organization → Secondary storage organization
  • 1 Software and its engineering → Automatic programming
  • 1 Software and its engineering → Search-based software engineering
  • 1 Theory of computation → Parameterized complexity and exact algorithms

  • Refine by Keyword
  • 1 Hamiltonian cycle
  • 1 Parameterized complexity
  • 1 Program synthesis
  • 1 crash consistency
  • 1 cutwidth
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail