2 Search Results for "Xu, Haike"


Document
Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences

Authors: Tuyen Pham and Hubert Wagner

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
The contributions of the paper span theoretical and implementational results. First, we prove that Kd-trees can be extended to ℝ^d with the distance measured by an arbitrary Bregman divergence. Perhaps surprisingly, this shows that the triangle inequality is not necessary for correct pruning in Kd-trees. Second, we offer an efficient algorithm and C++ implementation for nearest neighbour search for decomposable Bregman divergences. The implementation supports the Kullback-Leibler divergence (relative entropy) which is a popular distance between probability vectors and is commonly used in statistics and machine learning. This is a step toward broadening the usage of computational geometry algorithms. Our benchmarks show that our implementation efficiently handles both exact and approximate nearest neighbour queries. Compared to a linear search, we achieve two orders of magnitude speedup for practical scenarios in dimension up to 100. Our solution is simpler and more efficient than competing methods.

Cite as

Tuyen Pham and Hubert Wagner. Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 45:1-45:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pham_et_al:LIPIcs.WADS.2025.45,
  author =	{Pham, Tuyen and Wagner, Hubert},
  title =	{{Fast Kd-Trees for the Kullback-Leibler Divergence and Other Decomposable Bregman Divergences}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{45:1--45:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.45},
  URN =		{urn:nbn:de:0030-drops-242766},
  doi =		{10.4230/LIPIcs.WADS.2025.45},
  annote =	{Keywords: Kd-tree, k-d tree, nearest neighbour search, Bregman divergence, decomposable Bregman divergence, KL divergence, relative entropy, cross entropy, Shannon’s entropy}
}
Document
Embeddings and Labeling Schemes for A*

Authors: Talya Eden, Piotr Indyk, and Haike Xu

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
A* is a classic and popular method for graphs search and path finding. It assumes the existence of a heuristic function h(u,t) that estimates the shortest distance from any input node u to the destination t. Traditionally, heuristics have been handcrafted by domain experts. However, over the last few years, there has been a growing interest in learning heuristic functions. Such learned heuristics estimate the distance between given nodes based on "features" of those nodes. In this paper we formalize and initiate the study of such feature-based heuristics. In particular, we consider heuristics induced by norm embeddings and distance labeling schemes, and provide lower bounds for the tradeoffs between the number of dimensions or bits used to represent each graph node, and the running time of the A* algorithm. We also show that, under natural assumptions, our lower bounds are almost optimal.

Cite as

Talya Eden, Piotr Indyk, and Haike Xu. Embeddings and Labeling Schemes for A*. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{eden_et_al:LIPIcs.ITCS.2022.62,
  author =	{Eden, Talya and Indyk, Piotr and Xu, Haike},
  title =	{{Embeddings and Labeling Schemes for A*}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.62},
  URN =		{urn:nbn:de:0030-drops-156585},
  doi =		{10.4230/LIPIcs.ITCS.2022.62},
  annote =	{Keywords: A* algorithm, path finding, graph search}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2022

  • Refine by Author
  • 1 Eden, Talya
  • 1 Indyk, Piotr
  • 1 Pham, Tuyen
  • 1 Wagner, Hubert
  • 1 Xu, Haike

  • Refine by Series/Journal
  • 2 LIPIcs

  • Refine by Classification
  • 1 Information systems → Data structures
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 1 A* algorithm
  • 1 Bregman divergence
  • 1 KL divergence
  • 1 Kd-tree
  • 1 Shannon’s entropy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail