License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2019.43
URN: urn:nbn:de:0030-drops-104477
URL: https://drops.dagstuhl.de/opus/volltexte/2019/10447/
Go to the corresponding LIPIcs Volume Portal


Hsu, Ching-Hsiang ; Chiang, Yi-Jen ; Yap, Chee

Rods and Rings: Soft Subdivision Planner for R^3 x S^2

pdf-format:
LIPIcs-SoCG-2019-43.pdf (2 MB)


Abstract

We consider path planning for a rigid spatial robot moving amidst polyhedral obstacles. Our robot is either a rod or a ring. Being axially-symmetric, their configuration space is R^3 x S^2 with 5 degrees of freedom (DOF). Correct, complete and practical path planning for such robots is a long standing challenge in robotics. While the rod is one of the most widely studied spatial robots in path planning, the ring seems to be new, and a rare example of a non-simply-connected robot. This work provides rigorous and complete algorithms for these robots with theoretical guarantees. We implemented the algorithms in our open-source Core Library. Experiments show that they are practical, achieving near real-time performance. We compared our planner to state-of-the-art sampling planners in OMPL [Sucan et al., 2012]. Our subdivision path planner is based on the twin foundations of epsilon-exactness and soft predicates. Correct implementation is relatively easy. The technical innovations include subdivision atlases for S^2, introduction of Sigma_2 representations for footprints, and extensions of our feature-based technique for "opening up the blackbox of collision detection".

BibTeX - Entry

@InProceedings{hsu_et_al:LIPIcs:2019:10447,
  author =	{Ching-Hsiang Hsu and Yi-Jen Chiang and Chee Yap},
  title =	{{Rods and Rings: Soft Subdivision Planner for R^3 x S^2}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{43:1--43:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Gill Barequet and Yusu Wang},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10447},
  URN =		{urn:nbn:de:0030-drops-104477},
  doi =		{10.4230/LIPIcs.SoCG.2019.43},
  annote =	{Keywords: Algorithmic Motion Planning, Subdivision Methods, Resolution-Exact Algorithms, Soft Predicates, Spatial Rod Robots, Spatial Ring Robots}
}

Keywords: Algorithmic Motion Planning, Subdivision Methods, Resolution-Exact Algorithms, Soft Predicates, Spatial Rod Robots, Spatial Ring Robots
Collection: 35th International Symposium on Computational Geometry (SoCG 2019)
Issue Date: 2019
Date of publication: 11.06.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI