Representation of Interdependencies Between Urban Networks by a Multi-Layer Graph (Short Paper)

Authors Laura Pinson, Géraldine Del Mondo, Pierrick Tranouez



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2019.4.pdf
  • Filesize: 0.72 MB
  • 8 pages

Document Identifiers

Author Details

Laura Pinson
  • Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, 76000 Rouen, France
Géraldine Del Mondo
  • Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, 76000 Rouen, France
Pierrick Tranouez
  • Normandie Univ, Univ Rouen, UNIROUEN, UNIHAVRE, LITIS, 76000 Rouen, France

Acknowledgements

This work takes part in the RGC4 project. This project has been funded with the support from ANR (ANR-15-CE39-0015)

Cite AsGet BibTex

Laura Pinson, Géraldine Del Mondo, and Pierrick Tranouez. Representation of Interdependencies Between Urban Networks by a Multi-Layer Graph (Short Paper). In 14th International Conference on Spatial Information Theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 142, pp. 4:1-4:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.COSIT.2019.4

Abstract

The RGC4 (Urban resilience and Crisis Management in a Context of Slow Flood to Slow Kinetics) project aims to develop tools to help manage critical technical networks as part of the management process of crisis in a context of slow kinetic flooding in Paris. This project focuses on cascading models to identify a number of inter-dependencies between networks and to define tools capable of coordinating the actions of managers before and during the crisis. This paper revisits the conceptual and methodological bases of networks approach to study the inter-dependencies between networks. Research that studies the return to service of infrastructure networks often angle it from the perspective of operational research. The article proposes a graph theory perspective based on a multi-layer network approach and shows how to characterize the inter-dependencies between networks at three process levels (macro, meso, micro)

Subject Classification

ACM Subject Classification
  • Applied computing → Operations research
  • Applied computing → Decision analysis
Keywords
  • graph theory
  • multi-layer network
  • inter-dependencies
  • urban networks
  • urban resilience

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael Batty. A new theory of space syntax, 2004. Google Scholar
  2. Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin. The structure and dynamics of multilayer networks. Physics Reports, 544(1):1–122, 2014. Google Scholar
  3. Paolo Bocchini and Dan M Frangopol. Restoration of bridge networks after an earthquake: Multicriteria intervention optimization. Earthquake Spectra, 28(2):426-455, 2012. Google Scholar
  4. Sergey V Buldyrev, Roni Parshani, Gerald Paul, H Eugene Stanley, and Shlomo Havlin. Catastrophic cascade of failures in interdependent networks. Nature, 464(7291):1025, 2010. Google Scholar
  5. Emanuele Cozzo, Raquel A Banos, Sandro Meloni, and Yamir Moreno. Contact-based social contagion in multiplex networks. Physical Review E, 88(5):050801, 2013. Google Scholar
  6. Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural reducibility of multilayer networks. Nature communications, 6:6864, 2015. Google Scholar
  7. Ian Dobson, Jie Chen, JS Thorp, Benjamin A Carreras, and David E Newman. Examining criticality of blackouts in power system models with cascading events. In Proceedings of the 35th annual Hawaii international conference on system sciences, pages 10-pp. IEEE, 2002. Google Scholar
  8. MEDD (Ministère de l’Environnement et du Développement Durable. Réduire la vulnérabilité des réseaux urbains aux inondations, 2005. Google Scholar
  9. Yan Guo. Urban resilience in post-disaster reconstruction: Towards a resilient development in Sichuan, China. International Journal of Disaster Risk Science, 3(1):45-55, 2012. Google Scholar
  10. Zhi-Hua Hu and Zhao-Han Sheng. Disaster spread simulation and rescue time optimization in a resource network. Information Sciences, 298:118-135, 2015. Google Scholar
  11. R Kanawati. Co-authorship link prediction in multiplex bibliographical networks. In Multiplex network workshop-European conference on complex systems (ECCS’13), 2013. Google Scholar
  12. Serge Lhomme. Analyse théorique et quantitative de la remise en service de réseaux d’infrastructures: définition d’un cadre d’analyse fondé sur les propriétés structurelles de ces réseaux. In Treizièmes rencontres Théo Quant, 2017. Google Scholar
  13. Timothy C Matisziw, Alan T Murray, and Tony H Grubesic. Strategic network restoration. Networks and Spatial Economics, 10(3):345-361, 2010. Google Scholar
  14. Céline Rozenblat. Approches multiplexes des systèmes de villes dans les réseaux d’entreprises multinationales. Revue d’Économie Régionale & Urbaine, page 393–424, 2015. Google Scholar
  15. Marie Toubin. Améliorer la résilience urbaine par un diagnostic collaboratif, l'exemple des services urbains parisiens face à l'inondation. PhD thesis, Université Paris-Diderot-Paris VII, 2014. Google Scholar
  16. Brian Walker, Crawford S Holling, Stephen Carpenter, and Ann Kinzig. Resilience, adaptability and transformability in social-ecological systems. Ecology and society, 9(2), 2004. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail