Hardness of FO Model-Checking on Random Graphs

Authors Jan Dreier , Peter Rossmanith



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2019.11.pdf
  • Filesize: 0.49 MB
  • 15 pages

Document Identifiers

Author Details

Jan Dreier
  • Department of Computer Science, RWTH Aachen University, Germany
Peter Rossmanith
  • Department of Computer Science, RWTH Aachen University, Germany

Cite AsGet BibTex

Jan Dreier and Peter Rossmanith. Hardness of FO Model-Checking on Random Graphs. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.IPEC.2019.11

Abstract

It is known that FO model-checking is fixed-parameter tractable on Erdős - Rényi graphs G(n,p(n)) if the edge-probability p(n) is sufficiently small [Grohe, 2001] (p(n)=O(n^epsilon/n) for every epsilon>0). A natural question to ask is whether this result can be extended to bigger probabilities. We show that for Erdős - Rényi graphs with vertex colors the above stated upper bound by Grohe is the best possible. More specifically, we show that there is no FO model-checking algorithm with average FPT run time on vertex-colored Erdős - Rényi graphs G(n,n^delta/n) (0 < delta < 1) unless AW[*]subseteq FPT/poly. This might be the first result where parameterized average-case intractability of a natural problem with a natural probability distribution is linked to worst-case complexity assumptions. We further provide hardness results for FO model-checking on other random graph models, including G(n,1/2) and Chung-Lu graphs, where our intractability results tightly match known tractability results [E. D. Demaine et al., 2014]. We also provide lower bounds on the size of shallow clique minors in certain Erdős - Rényi and Chung - Lu graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • random graphs
  • FO model-checking

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge University Press, 2009. Google Scholar
  2. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999. Google Scholar
  3. Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in Theoretical Computer Science, 2(1):1-106, 2006. Google Scholar
  4. Béla Bollobás. The diameter of random graphs. Transactions of the American Mathematical Society, 267(1):41-52, 1981. Google Scholar
  5. Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The Degree Sequence of a Scale-free Random Graph Process. Random Structures & Algorithms, 18(3):279-290, May 2001. Google Scholar
  6. B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001. Google Scholar
  7. Fan Chung, Fan RK Chung, Fan Chung Graham, Linyuan Lu, Kian Fan Chung, et al. Complex graphs and networks, volume 107. American Math. Soc., 2006. Google Scholar
  8. Fan Chung and Linyuan Lu. The diameter of sparse random graphs. Advances in Applied Mathematics, 26(4):257-279, 2001. Google Scholar
  9. Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected Degree Sequences. Annals of Combinatorics, 6(2):125-145, 2002. Google Scholar
  10. Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees. Proc. of the National Academy of Sciences, 99(25):15879-15882, 2002. Google Scholar
  11. Bruno Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of Finite Graphs. Information and Computation, 85(1):12-75, 1990. Google Scholar
  12. Ronald de Haan. An Overview of Non-Uniform Parameterized Complexity. Electronic Colloquium on Computational Complexity (ECCC), 22:130, 2015. Google Scholar
  13. E. D. Demaine, F. Reidl, P. Rossmanith, F. Sánchez Villaamil, S. Sikdar, and B. D. Sullivan. Structural Sparsity of Complex Networks: Random Graph Models and Linear Algorithms. CoRR, abs/1406.2587, 2014. To appear in JCSS. URL: http://arxiv.org/abs/1406.2587,
  14. R. Diestel. Graph Theory. Springer, Heidelberg, 2010. Google Scholar
  15. Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. The Parameterized Complexity of Relational Database Queries and an Improved Characterization of W[1]. In First Conference of the Centre for Discrete Mathematics and Theoretical Computer Science, DMTCS 1996, Auckland, New Zealand, December, 9-13, 1996, pages 194-213, 1996. Google Scholar
  16. Z. Dvořák. Asymptotical Structure of Combinatorial Objects. PhD thesis, Charles University, Faculty of Mathematics and Physics, 2007. Google Scholar
  17. Zdenek Dvořak, Daniel Král, and Robin Thomas. Deciding First-Order Properties for Sparse Graphs. In Proceedings of the 51st Conference on Foundations of Computer Science, pages 133-142, 2010. Google Scholar
  18. Nikolaos Fountoulakis, Tobias Friedrich, and Danny Hermelin. On the Average-Case Complexity of Parameterized Clique. Theoretical Computer Science, 576:18-29, 2015. Google Scholar
  19. Tobias Friedrich and Anton Krohmer. Parameterized Clique on Inhomogeneous Random Graphs. Discrete Applied Mathematics, 184:130-138, 2015. Google Scholar
  20. Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, and M. S. Ramanujan. A New Perspective on FO Model Checking of Dense Graph Classes. CoRR, abs/1805.01823, 2018. URL: http://arxiv.org/abs/1805.01823.
  21. Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded expansion classes. arXiv preprint arXiv:1810.02389, 2018. Google Scholar
  22. Robert Ganian, Petr Hlinený, Alexander Langer, Jan Obdrzálek, Peter Rossmanith, and Somnath Sikdar. Lower bounds on the complexity of MSO₁-model checking. J. Comput. Syst. Sci., 80(1):180-194, 2014. Google Scholar
  23. Martin Grohe. Generalized model-checking problems for first-order logic. In Annual Symposium on Theoretical Aspects of Computer Science, pages 12-26. Springer, 2001. Google Scholar
  24. Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357-422, 2008. Google Scholar
  25. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of Nowhere Dense Graphs. JACM, 64(3):17, 2017. Google Scholar
  26. Tao Jiang. Compact topological minors in graphs. Journal of Graph Theory, 67(2):139-152, 2011. Google Scholar
  27. Victor Klee and David Larman. Diameters of random graphs. Canadian Journal of Mathematics, 33(3):618-640, 1981. Google Scholar
  28. A. Kostochka and L. Pyber. Small topological complete subgraphs of "dense" graphs. Combinatorica, 8:83-86, 1988. Google Scholar
  29. Stephan Kreutzer. On the Parameterized Intractability of Monadic Second-Order Logic. Logical Methods in Computer Science, 8(1), 2012. Google Scholar
  30. Stephan Kreutzer and Siamak Tazari. Lower Bounds for the Complexity of Monadic Second-Order Logic. In Proceedings of the 22nd Symposium on Logic in Computer Science, pages 189-198. IEEE Computer Society, 2010. Google Scholar
  31. Leonid A Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285-286, 1986. Google Scholar
  32. M. Molloy and B. A. Reed. A Critical Point for Random Graphs with a Given Degree Sequence. Random Structures & Algorithms, 6(2/3):161-180, 1995. Google Scholar
  33. M. Molloy and B. A. Reed. The Size of the Giant Component of a Random Graph with a Given Degree Sequence. Combin., Probab. Comput., 7(3):295-305, 1998. Google Scholar
  34. Juan Andrés Montoya and Moritz Müller. Parameterized random complexity. Theory of Computing Systems, 52(2):221-270, 2013. Google Scholar
  35. Moritz Müller. Parameterized Randomization. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2008. Google Scholar
  36. Jaroslav Nešetřil, Patrice Ossona de Mendez, and David R Wood. Characterisations and examples of graph classes with bounded expansion. European Journal of Combinatorics, 33(3):350-373, 2012. Google Scholar
  37. Oliver Riordan and Nicholas Wormald. The diameter of sparse random graphs. Combinatorics, Probability and Computing, 19(5-6):835-926, 2010. Google Scholar
  38. Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries over Databases with Local Bounded Expansion. In LIPIcs-Leibniz International Proceedings in Informatics, volume 68. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. Google Scholar
  39. Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory. PhD thesis, Dept. of Electrical Engineering, MIT, 1974. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail