License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2020.6
URN: urn:nbn:de:0030-drops-125586
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12558/
Go to the corresponding LIPIcs Volume Portal


Doron, Dean ; Hatami, Pooya ; Hoza, William M.

Log-Seed Pseudorandom Generators via Iterated Restrictions

pdf-format:
LIPIcs-CCC-2020-6.pdf (0.7 MB)


Abstract

There are only a few known general approaches for constructing explicit pseudorandom generators (PRGs). The "iterated restrictions" approach, pioneered by Ajtai and Wigderson [Ajtai and Wigderson, 1989], has provided PRGs with seed length polylog n or even Õ(log n) for several restricted models of computation. Can this approach ever achieve the optimal seed length of O(log n)? In this work, we answer this question in the affirmative. Using the iterated restrictions approach, we construct an explicit PRG for read-once depth-2 AC⁰[⊕] formulas with seed length O(log n) + Õ(log(1/ε)). In particular, we achieve optimal seed length O(log n) with near-optimal error ε = exp(-Ω̃(log n)). Even for constant error, the best prior PRG for this model (which includes read-once CNFs and read-once 𝔽₂-polynomials) has seed length Θ(log n ⋅ (log log n)²) [Chin Ho Lee, 2019]. A key step in the analysis of our PRG is a tail bound for subset-wise symmetric polynomials, a generalization of elementary symmetric polynomials. Like elementary symmetric polynomials, subset-wise symmetric polynomials provide a way to organize the expansion of ∏_{i=1}^m (1 + y_i). Elementary symmetric polynomials simply organize the terms by degree, i.e., they keep track of the number of variables participating in each monomial. Subset-wise symmetric polynomials keep track of more data: for a fixed partition of [m], they keep track of the number of variables from each subset participating in each monomial. Our tail bound extends prior work by Gopalan and Yehudayoff [Gopalan and Yehudayoff, 2014] on elementary symmetric polynomials.

BibTeX - Entry

@InProceedings{doron_et_al:LIPIcs:2020:12558,
  author =	{Dean Doron and Pooya Hatami and William M. Hoza},
  title =	{{Log-Seed Pseudorandom Generators via Iterated Restrictions}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{6:1--6:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Shubhangi Saraf},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12558},
  URN =		{urn:nbn:de:0030-drops-125586},
  doi =		{10.4230/LIPIcs.CCC.2020.6},
  annote =	{Keywords: Pseudorandom generators, Pseudorandom restrictions, Read-once depth-2 formulas, Parity gates}
}

Keywords: Pseudorandom generators, Pseudorandom restrictions, Read-once depth-2 formulas, Parity gates
Collection: 35th Computational Complexity Conference (CCC 2020)
Issue Date: 2020
Date of publication: 17.07.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI