License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CONCUR.2020.11
URN: urn:nbn:de:0030-drops-128231
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12823/
Go to the corresponding LIPIcs Volume Portal


Plyukhin, Dan ; Agha, Gul

Scalable Termination Detection for Distributed Actor Systems

pdf-format:
LIPIcs-CONCUR-2020-11.pdf (0.6 MB)


Abstract

Automatic garbage collection (GC) prevents certain kinds of bugs and reduces programming overhead. GC techniques for sequential programs are based on reachability analysis. However, testing reachability from a root set is inadequate for determining whether an actor is garbage because an unreachable actor may send a message to a reachable actor. Instead, it is sufficient to check termination (sometimes also called quiescence): an actor is terminated if it is not currently processing a message and cannot receive a message in the future. Moreover, many actor frameworks provide all actors with access to file I/O or external storage; without inspecting an actor’s internal code, it is necessary to check that the actor has terminated to ensure that it may be garbage collected in these frameworks. Previous algorithms to detect actor garbage require coordination mechanisms such as causal message delivery or nonlocal monitoring of actors for mutation. Such coordination mechanisms adversely affect concurrency and are therefore expensive in distributed systems. We present a low-overhead reference listing technique (called DRL) for termination detection in actor systems. DRL is based on asynchronous local snapshots and message-passing between actors. This enables a decentralized implementation and transient network partition tolerance. The paper provides a formal description of DRL, shows that all actors identified as garbage have indeed terminated (safety), and that all terminated actors - under certain reasonable assumptions - will eventually be identified (liveness).

BibTeX - Entry

@InProceedings{plyukhin_et_al:LIPIcs:2020:12823,
  author =	{Dan Plyukhin and Gul Agha},
  title =	{{Scalable Termination Detection for Distributed Actor Systems}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Igor Konnov and Laura Kov{\'a}cs},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12823},
  URN =		{urn:nbn:de:0030-drops-128231},
  doi =		{10.4230/LIPIcs.CONCUR.2020.11},
  annote =	{Keywords: actors, concurrency, termination detection, quiescence detection, garbage collection, distributed systems}
}

Keywords: actors, concurrency, termination detection, quiescence detection, garbage collection, distributed systems
Collection: 31st International Conference on Concurrency Theory (CONCUR 2020)
Issue Date: 2020
Date of publication: 26.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI