License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2020.19
URN: urn:nbn:de:0030-drops-128856
Go to the corresponding LIPIcs Volume Portal

Bhore, Sujoy ; Li, Guangping ; Nöllenburg, Martin

An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

LIPIcs-ESA-2020-19.pdf (1 MB)


Map labeling is a classical problem in cartography and geographic information systems (GIS) that asks to place labels for area, line, and point features, with the goal to select and place the maximum number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types - (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be modeled as rectangle intersection graphs.
We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This breaks the natural barrier of Ω(Δ) update time (where Δ is the maximum degree in the graph) for vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic approximation schemes. For uniform rectangles, we first give an algorithm that maintains a 4-approximate Max-IS with O(1) update time. In a subsequent algorithm, we establish the trade-off between approximation quality 2(1+1/k) and update time O(k²log n), for k ∈ ℕ. We conclude with an algorithm that maintains a 2-approximate Max-IS for dynamic sets of unit-height and arbitrary-width rectangles with O(ω log n) update time, where ω is the maximum size of an independent set of rectangles stabbed by any horizontal line. We have implemented our algorithms and report the results of an experimental comparison exploring the trade-off between solution quality and update time for synthetic and real-world map labeling instances.

BibTeX - Entry

  author =	{Sujoy Bhore and Guangping Li and Martin N{\"o}llenburg},
  title =	{{An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{19:1--19:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Fabrizio Grandoni and Grzegorz Herman and Peter Sanders},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-128856},
  doi =		{10.4230/LIPIcs.ESA.2020.19},
  annote =	{Keywords: Independent Sets, Dynamic Algorithms, Rectangle Intersection Graphs, Approximation Algorithms, Experimental Evaluation}

Keywords: Independent Sets, Dynamic Algorithms, Rectangle Intersection Graphs, Approximation Algorithms, Experimental Evaluation
Collection: 28th Annual European Symposium on Algorithms (ESA 2020)
Issue Date: 2020
Date of publication: 26.08.2020
Supplementary Material: Source code and benchmark data at

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI