Multistage s-t Path: Confronting Similarity with Dissimilarity in Temporal Graphs

Authors Till Fluschnik , Rolf Niedermeier , Carsten Schubert, Philipp Zschoche



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2020.43.pdf
  • Filesize: 0.55 MB
  • 16 pages

Document Identifiers

Author Details

Till Fluschnik
  • Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
Rolf Niedermeier
  • Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
Carsten Schubert
  • Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
Philipp Zschoche
  • Technische Universität Berlin, Algorithmics and Computational Complexity, Germany

Cite AsGet BibTex

Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage s-t Path: Confronting Similarity with Dissimilarity in Temporal Graphs. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ISAAC.2020.43

Abstract

Addressing a quest by Gupta et al. [ICALP'14], we provide a first, comprehensive study of finding a short s-t path in the multistage graph model, referred to as the Multistage s-t Path problem. Herein, given a sequence of graphs over the same vertex set but changing edge sets, the task is to find short s-t paths in each graph ("snapshot") such that in the found path sequence the consecutive s-t paths are "similar". We measure similarity by the size of the symmetric difference of either the vertex set (vertex-similarity) or the edge set (edge-similarity) of any two consecutive paths. We prove that these two variants of Multistage s-t Path are already NP-hard for an input sequence of only two graphs and maximum vertex degree four. Motivated by this fact and natural applications of this scenario e.g. in traffic route planning, we perform a parameterized complexity analysis. Among other results, for both variants, vertex- and edge-similarity, we prove parameterized hardness (W[1]-hardness) regarding the parameter path length (solution size) for both variants, vertex- and edge-similarity. As a further conceptual study, we then modify the multistage model by asking for dissimilar consecutive paths. One of our main technical results (employing so-called representative sets known from non-temporal settings) is that dissimilarity allows for fixed-parameter tractability for the parameter solution size, contrasting the W[1]-hardness of the corresponding similarity case. We also provide partially positive results concerning efficient and effective data reduction (kernelization).

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Graph algorithms analysis
Keywords
  • Temporal graphs
  • shortest paths
  • consecutive similarity
  • consecutive dissimilarity
  • parameterized complexity
  • kernelization
  • representative sets in temporal graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Evripidis Bampis, Bruno Escoffier, and Alexander Kononov. LP-based algorithms for multistage minimization problems. CoRR, abs/1909.10354, 2019. URL: http://arxiv.org/abs/1909.10354.
  2. Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage matchings. In Proc. of 16th SWAT, volume 101 of LIPIcs, pages 7:1-7:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  3. Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online multistage subset maximization problems. In Proc. of 27th ESA, volume 144 of LIPIcs, pages 11:1-11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  4. Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Proc. of 44th MFCS, volume 138 of LIPIcs, pages 22:1-22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  5. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. Google Scholar
  6. Robert Bredereck, Till Fluschnik, and Andrzej Kaczmarczyk. Multistage committee election. CoRR, abs/2005.02300, 2020. URL: http://arxiv.org/abs/2005.02300.
  7. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. In Proc. of 31st ISAAC, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2020. Accepted for publication. Google Scholar
  8. Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417-1440, 2004. Google Scholar
  9. Richard J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and Applications, 10(2):303-318, 1965. Google Scholar
  10. David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics. In Proc. of 41st ICALP, volume 8572 of LNCS, pages 459-470. Springer, 2014. Google Scholar
  11. Jessica Enright and Kitty Meeks. Deleting edges to restrict the size of an epidemic: A new application for treewidth. Algorithmica, 80(6):1857-1889, 2018. Google Scholar
  12. Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to restrict the size of an epidemic in temporal networks. In Proc. of 44th MFCS, volume 138 of LIPIcs, pages 57:1-57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  13. Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two moves per time step make a difference. In Proc. of 46th ICALP, volume 132 of LIPIcs, pages 141:1-141:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. Google Scholar
  14. Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal graphs. In Proc. of 43rd MFCS, volume 117 of LIPIcs, pages 36:1-36:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. Google Scholar
  15. Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The parameterized complexity of the minimum shared edges problem. Journal of Computer and System Sciences, 106:23-48, 2019. Google Scholar
  16. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. Temporal graph classes: A view through temporal separators. Theor. Comput. Sci., 806:197-218, 2020. Google Scholar
  17. Till Fluschnik, Marco Morik, and Manuel Sorge. The complexity of routing with collision avoidance. Journal of Computer and System Sciences, 102:69-86, 2019. Google Scholar
  18. Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex cover. In Proc. of 14th IPEC, volume 148 of LIPIcs, pages 14:1-14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  19. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. Journal of the ACM, 63(4):29:1-29:60, 2016. Google Scholar
  20. Saeed Ghariblou, Mostafa Salehi, Matteo Magnani, and Mahdi Jalili. Shortest paths in multiplex networks. Nature Scientific Reports, 7:2142, 2017. Google Scholar
  21. Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts: Parameterized complexity and algorithms. Discrete Optimization, 8(1):72-86, 2011. Google Scholar
  22. Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization for matroids and matchings. In Proc. of 41st ICALP, volume 8572 of LNCS, pages 563-575. Springer, 2014. Google Scholar
  23. Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by conservation. Theoretical Computer Science, 494:86-98, 2013. Google Scholar
  24. Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and Andrej Sajenko. Multistage problems on a global budget. CoRR, abs/1912.04392, 2019. URL: http://arxiv.org/abs/1912.04392.
  25. Anne-Sophie Himmel, Matthias Bentert, André Nichterlein, and Rolf Niedermeier. Efficient computation of optimal temporal walks under waiting-time constraints. In Proc. of 8th COMPLEX NETWORKS, volume 882 of Studies in Computational Intelligence, pages 494-506. Springer, 2019. Google Scholar
  26. Petter Holme and Jari Saramäki (eds.). Temporal Networks. Springer, 2013. Google Scholar
  27. Petter Holme and Jari Saramäki (eds.). Temporal Network Theory. Springer, 2019. Google Scholar
  28. David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002. Google Scholar
  29. Matthieu Latapy, Marco Fiore, and Artur Ziviani. Link streams: Methods and applications. Computer Networks, 150:263-265, 2019. Google Scholar
  30. Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61:1-61:29, 2018. Google Scholar
  31. Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Mathematics, 12(4):239-280, 2016. Google Scholar
  32. Burkhard Monien. How to find long paths efficiently. In North-Holland Mathematics Studies, volume 109, pages 239-254. Elsevier, 1985. Google Scholar
  33. Thomas J Schaefer. The complexity of satisfiability problems. In Proc. 10th STOC, pages 216-226, 1978. Google Scholar
  34. Carsten Schubert. Preserving paths in temporal graphs. Master’s thesis, TU Berlin, September 2019. Bachelor thesis. URL: http://fpt.akt.tu-berlin.de/zschoche/bachelor-carsten-schubert.pdf.
  35. Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient algorithms for temporal path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11):2927-2942, 2016. Google Scholar
  36. Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of finding small separators in temporal graphs. Journal of Computer and System Sciences, 107:72-92, 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail