Exhaustive Generation of Benzenoid Structures Sharing Common Patterns

Authors Yannick Carissan , Denis Hagebaum-Reignier , Nicolas Prcovic, Cyril Terrioux , Adrien Varet



PDF
Thumbnail PDF

File

LIPIcs.CP.2021.19.pdf
  • Filesize: 1.05 MB
  • 18 pages

Document Identifiers

Author Details

Yannick Carissan
  • Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
Denis Hagebaum-Reignier
  • Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
Nicolas Prcovic
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Cyril Terrioux
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Adrien Varet
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Cite AsGet BibTex

Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien Varet. Exhaustive Generation of Benzenoid Structures Sharing Common Patterns. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.CP.2021.19

Abstract

Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied both experimentally and theoretically and can have various physicochemical properties (mechanical resistance, electronic conductivity, ...) from which a lot of concrete applications are derived. These properties can rely on the existence or absence of fragments of the molecule corresponding to a given pattern (some patterns impose the nature of certain bonds, which has an impact on the whole electronic structure). The exhaustive generation of families of benzenoids sharing the absence or presence of given patterns is an important problem in chemistry, particularly in theoretical chemistry, where various methods can be used to better understand the link between their shapes and their electronic properties. In this paper, we show how constraint programming can help chemists to answer different questions around this problem. To do so, we propose different models including one based on a variant of the subgraph isomorphism problem and we generate the desired structures using Choco solver.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Artificial intelligence
Keywords
  • Constraint satisfaction problem
  • modeling
  • pattern
  • application
  • theoretical chemistry

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. R. Ajayakumar, Ji Ma, Andrea Lucotti, Karl Sebastian Schellhammer, Gianluca Serra, Evgenia Dmitrieva, Marco Rosenkranz, Hartmut Komber, Junzhi Liu, Frank Ortmann, Matteo Tommasini, and Xinliang Feng. Persistent peri-Heptacene: Synthesis and In Situ Characterization. Angew. Chem. Int. Ed., 2021. URL: https://doi.org/10.1002/anie.202102757.
  2. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting Systematic Search by Weighting Constraints. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pages 146-150, 2004. Google Scholar
  3. Gunnar Brinkmann, Gilles Caporossi, and Pierre Hansen:. A Constructive Enumeration of Fusenes and Benzenoids. Journal of Algorithms, 45(2), 2002. URL: https://doi.org/10.1016/S0196-6774(02)00215-8.
  4. Yannick Carissan, Chisom-Adaobi Dim, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien Varet. Computing the Local Aromaticity of Benzenoids Thanks to Constraint Programming. In Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming (CP), pages 673-689, 2020. URL: https://doi.org/10.1007/978-3-030-58475-7_39.
  5. Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien Varet. Using Constraint Programming to Generate Benzenoid Structures in Theoretical Chemistry. In Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming (CP), pages 690-706, 2020. URL: https://doi.org/10.1007/978-3-030-58475-7_40.
  6. Ying Chen, Chaojun Lin, Zhixing Luo, Zhibo Yin, Haonan Shi, Yanpeng Zhu, and Jiaobing Wang. Double π-Extended Undecabenzo[7]helicene. Angew. Chem. Int. Ed., 60(14):7796-7801, 2021. URL: https://doi.org/10.1002/anie.202014621.
  7. Zhongfang Chen, Chaitanya S. Wannere, Clémence Corminboeuf, Ralph Puchta, and Paul von Ragué Schleyer. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem Rev, 105:3842-3888, 2005. URL: https://doi.org/10.1021/cr030088.
  8. Kwan Yin Cheung, Kosuke Watanabe, Yasutomo Segawa, and Kenichiro Itami. Synthesis of a zigzag carbon nanobelt. Nat. Chem., 13(3):255-259, 2021. URL: https://doi.org/10.1038/s41557-020-00627-5.
  9. J. Cyvin, J. Brunvoll, and B. N. Cyvin. Search for Concealed Non-Kekuléan Benzenoids and Coronoids. J. Chem. Inf. Comput. Sci., 29(4):237, 1989. URL: https://doi.org/10.1021/ci00064a002.
  10. Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Improved Static Symmetry Breaking for SAT. In Proceedings of the 19th International Conference on Theory and Applications of Satisfiability Testing (SAT), pages 104-122, 2016. URL: https://doi.org/10.1007/978-3-319-40970-2_8.
  11. Tim Dumslaff, Yanwei Gu, Giuseppe M. Paternò, Zijie Qiu, Ali Maghsoumi, Matteo Tommasini, Xinliang Feng, Francesco Scotognella, Akimitsu Narita, and Klaus Müllen. Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration. Chem. Sci., 11(47):12816-12821, 2020. URL: https://doi.org/10.1039/D0SC04649C.
  12. Jean-Guillaume Fages. Exploitation de structures de graphe en programmation par contraintes. PhD thesis, École des mines de Nantes, France, 2014. Google Scholar
  13. Jean-Guillaume Fages, Xavier Lorca, and Charles Prud'homme. Choco solver user guide documentation. URL: https://choco-solver.readthedocs.io/en/latest/.
  14. Kei Fujise, Eiji Tsurumaki, Kan Wakamatsu, and Shinji Toyota. Construction of Helical Structures with Multiple Fused Anthracenes: Structures and Properties of Long Expanded Helicenes. Chemistry endash A European Journal, 27(14):4548-4552, March 2021. URL: https://doi.org/10.1002/chem.202004720.
  15. Djamal Habet and Cyril Terrioux. Conflict History based Search for Constraint Satisfaction Problem. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC), pages 1117-1122, 2019. URL: https://doi.org/10.1145/3297280.3297389.
  16. Sindhu Kancherla and Kåre B. Jørgensen. Synthesis of PhenaceneendashHelicene Hybrids by Directed Remote Metalation. J. Org. Chem., 85(17):11140-11153, 2020. URL: https://doi.org/10.1021/acs.joc.0c01097.
  17. Ashok Keerthi, Carlos Sánchez-Sánchez, Okan Deniz, Pascal Ruffieux, Dieter Schollmeyer, Xinliang Feng, Akimitsu Narita, Roman Fasel, and Klaus Müllen. On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure. Chem. endash Asian J., 15(22):3807-3811, 2020. URL: https://doi.org/10.1002/asia.202001008.
  18. Christophe Lecoutre and Olivier Roussel, editors. Proceedings of the 2018 XCSP3 Competition, 2018. URL: http://arxiv.org/abs/1901.01830.
  19. Junzhi Liu and Xinliang Feng. Synthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectives. Angewandte Chemie International Edition, 59:2-18, 2020. URL: https://doi.org/10.1002/anie.202008838.
  20. Max M. Martin, Frank Hampel, and Norbert Jux. A Hexabenzocoronene-Based Helical Nanographene. Chem. endash Eur. J., 26(45):10210-10212, 2020. URL: https://doi.org/10.1002/chem.202001471.
  21. Shantanu Mishra, Doreen Beyer, Kristjan Eimre, Shawulienu Kezilebieke, Reinhard Berger, Oliver Gröning, Carlo A. Pignedoli, Klaus Müllen, Peter Liljeroth, Pascal Ruffieux, Xinliang Feng, and Roman Fasel. Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology, 15(1):22-28, 2020. URL: https://doi.org/10.1038/s41565-019-0577-9.
  22. Shantanu Mishra, Doreen Beyer, Kristjan Eimre, Junzhi Liu, Reinhard Berger, Oliver Gröning, Carlo A. Pignedoli, Klaus Müllen, Roman Fasel, Xinliang Feng, and Pascal Ruffieux. Synthesis and Characterization of π-Extended Triangulene. Journal of the American Chemical Society, 141(27):10621-10625, 2019. URL: https://doi.org/10.1021/jacs.9b05319.
  23. Shantanu Mishra, Xuelin Yao, Qiang Chen, Kristjan Eimre, Oliver Gröning, Ricardo Ortiz, Marco Di Giovannantonio, Juan Carlos Sancho-García, Joaquín Fernández-Rossier, Carlo A. Pignedoli, Klaus Müllen, Pascal Ruffieux, Akimitsu Narita, and Roman Fasel. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem., pages 1-6, 2021. URL: https://doi.org/10.1038/s41557-021-00678-2.
  24. Tadashi Mori. Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev., 121(4):2373-2412, 2021. URL: https://doi.org/10.1021/acs.chemrev.0c01017.
  25. Marvin Nathusius, Barbara Ejlli, Frank Rominger, Jan Freudenberg, Uwe H. F. Bunz, and Klaus Müllen. Chrysene-Based Blue Emitters. Chemistry endash A European Journal, 26(66):15089-15093, 2020. URL: https://doi.org/10.1002/chem.202001808.
  26. Wenhui Niu, Ji Ma, Paniz Soltani, Wenhao Zheng, Fupin Liu, Alexey A. Popov, Jan J. Weigand, Hartmut Komber, Emanuele Poliani, Cinzia Casiraghi, Jörn Droste, Michael Ryan Hansen, Silvio Osella, David Beljonne, Mischa Bonn, Hai I. Wang, Xinliang Feng, Junzhi Liu, and Yiyong Mai. A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. J. Am. Chem. Soc., 142(43):18293-18298, 2020. URL: https://doi.org/10.1021/jacs.0c07013.
  27. Michele Pizzochero and Efthimios Kaxiras. Imprinting Tunable π-Magnetism in Graphene Nanoribbons via Edge Extensions. J. Phys. Chem. Lett., 12(4):1214-1219, February 2021. URL: https://doi.org/10.1021/acs.jpclett.0c03677.
  28. Zijie Qiu, Cheng-Wei Ju, Lucas Frédéric, Yunbin Hu, Dieter Schollmeyer, Grégory Pieters, Klaus Müllen, and Akimitsu Narita. Amplification of Dissymmetry Factors in π-Extended [7]- and [9]Helicenes. J. Am. Chem. Soc., 143(12):4661-4667, March 2021. URL: https://doi.org/10.1021/jacs.0c13197.
  29. Zijie Qiu, Akimitsu Narita, and Klaus Müllen. Carbon nanostructures by macromolecular design from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2020. Publisher: The Royal Society of Chemistry. URL: https://doi.org/10.1039/D0FD00023J.
  30. Georges Trinquier and Jean-Paul Malrieu. Predicting the Open-Shell Character of Polycyclic Hydrocarbons in Terms of Clar Sextets. The Journal of Physical Chemistry A, 122(4):1088-1103, 2018. URL: https://doi.org/10.1021/acs.jpca.7b11095.
  31. Mizuho Uryu, Taito Hiraga, Yoshito Koga, Yutaro Saito, Kei Murakami, and Kenichiro Itami. Synthesis of Polybenzoacenes: Annulative Dimerization of Phenylene Triflate by Twofold C-H Activation. Angew. Chem., 132(16):6613-6616, 2020. URL: https://doi.org/10.1002/ange.202001211.
  32. Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Extending Compact-Table to Negative and Short Tables. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pages 3951-3957, 2017. URL: https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14359/14122.
  33. Hugues Wattez, Christophe Lecoutre, Anastasia Paparrizou, and Sébastien Tabary. Refining Constraint Weighting. In Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 71-77, 2019. URL: https://doi.org/10.1109/ICTAI.2019.00019.
  34. Natalie Wohner, Pui K. Lam, and Klaus Sattler. Systematic energetics study of graphene nanoflakes: From armchair and zigzag to rough edges with pronounced protrusions and overcrowded bays. Carbon, 82:523-537, 2015. URL: https://doi.org/10.1016/j.carbon.2014.11.004.
  35. Zeming Xia, Sai Ho Pun, Han Chen, and Qian Miao. Synthesis of Zigzag Carbon Nanobelts through Scholl Reactions. Angew. Chem. Int. Ed., 60(18):10311-10318, 2021. URL: https://doi.org/10.1002/anie.202100343.
  36. Xuan Yang, Frank Rominger, and Michael Mastalerz. Benzo-Fused Perylene Oligomers with up to 13 Linearly Annulated Rings. Angew. Chem. Int. Ed., 60(14):7941-7946, 2021. URL: https://doi.org/10.1002/anie.202017062.
  37. Xuelin Yao, Wenhao Zheng, Silvio Osella, Zijie Qiu, Shuai Fu, Dieter Schollmeyer, Beate Müller, David Beljonne, Mischa Bonn, Hai I. Wang, Klaus Müllen, and Akimitsu Narita. Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. J. Am. Chem. Soc., 143(15):5654-5658, 2021. URL: https://doi.org/10.1021/jacs.1c01882.
  38. Cheng Zeng, Bohan Wang, Huanhuan Zhang, Mingxiao Sun, Liangbin Huang, Yanwei Gu, Zijie Qiu, Klaus Müllen, Cheng Gu, and Yuguang Ma. Electrochemical Synthesis, Deposition, and Doping of Polycyclic Aromatic Hydrocarbon Films. J. Am. Chem. Soc., 143(7):2682-2687, February 2021. URL: https://doi.org/10.1021/jacs.0c13298.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail