License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SWAT.2022.14
URN: urn:nbn:de:0030-drops-161743
URL: https://drops.dagstuhl.de/opus/volltexte/2022/16174/
Go to the corresponding LIPIcs Volume Portal


Berendsohn, Benjamin Aram

The Diameter of Caterpillar Associahedra

pdf-format:
LIPIcs-SWAT-2022-14.pdf (0.7 MB)


Abstract

The caterpillar associahedron ๐’œ(G) is a polytope arising from the rotation graph of search trees on a caterpillar tree G, generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of ๐’œ(G) is ฮ˜(n + m โ‹… (H+1)), where n is the number of vertices, m is the number of leaves, and H is the entropy of the leaf distribution of G.
Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilberโ€™s first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs.

BibTeX - Entry

@InProceedings{berendsohn:LIPIcs.SWAT.2022.14,
  author =	{Berendsohn, Benjamin Aram},
  title =	{{The Diameter of Caterpillar Associahedra}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16174},
  URN =		{urn:nbn:de:0030-drops-161743},
  doi =		{10.4230/LIPIcs.SWAT.2022.14},
  annote =	{Keywords: Graph Associahedra, Binary Search Trees, Elimination Trees}
}

Keywords: Graph Associahedra, Binary Search Trees, Elimination Trees
Collection: 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)
Issue Date: 2022
Date of publication: 22.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI