License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2015.248
URN: urn:nbn:de:0030-drops-55876
URL: https://drops.dagstuhl.de/opus/volltexte/2015/5587/
Go to the corresponding LIPIcs Volume Portal


Bonacina, Ilario ; Talebanfard, Navid

Strong ETH and Resolution via Games and the Multiplicity of Strategies

pdf-format:
24.pdf (0.5 MB)


Abstract

We consider a restriction of the Resolution proof system in which at most a fixed number of variables can be resolved more than once along each refutation path. This system lies between regular Resolution, in which no variable can be resolved more than once along any path, and general Resolution where there is no restriction on the number of such variables. We show that when the number of re-resolved variables is not too large, this proof system is consistent with the Strong Exponential Time Hypothesis (SETH). More precisely for large n and k we show that there are unsatisfiable k-CNF formulas which require Resolution refutations of size 2^{(1 - epsilon_k)n}, where n is the number of variables and epsilon_k=~O(k^{-1/5}), whenever in each refutation path we only allow at most ~O(k^{-1/5})n variables to be resolved multiple times. However, these re-resolved variables along different paths do not need to be the same. Prior to this work, the strongest proof system shown to be consistent with SETH was regular Resolution [Beck and Impagliazzo, STOC'13]. This work strengthens that result and gives a different and conceptually simpler game-theoretic proof for the case of regular Resolution.

BibTeX - Entry

@InProceedings{bonacina_et_al:LIPIcs:2015:5587,
  author =	{Ilario Bonacina and Navid Talebanfard},
  title =	{{Strong ETH and Resolution via Games and the Multiplicity of Strategies}},
  booktitle =	{10th International Symposium on Parameterized and Exact Computation (IPEC 2015)},
  pages =	{248--257},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-92-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{43},
  editor =	{Thore Husfeldt and Iyad Kanj},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2015/5587},
  URN =		{urn:nbn:de:0030-drops-55876},
  doi =		{10.4230/LIPIcs.IPEC.2015.248},
  annote =	{Keywords: Strong Exponential Time Hypothesis, resolution, proof systems}
}

Keywords: Strong Exponential Time Hypothesis, resolution, proof systems
Collection: 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)
Issue Date: 2015
Date of publication: 19.11.2015


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI