License:
Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2016.15
URN: urn:nbn:de:0030-drops-58236
URL: https://drops.dagstuhl.de/opus/volltexte/2016/5823/
Filmus, Yuval ;
Kindler, Guy ;
Mossel, Elchanan ;
Wimmer, Karl
Invariance Principle on the Slice
Abstract
We prove a non-linear invariance principle for the slice. As applications, we prove versions of Majority is Stablest, Bourgain's tail theorem, and the Kindler-Safra theorem for the slice. From the latter we deduce a stability version of the t-intersecting Erdos-Ko-Rado theorem.
BibTeX - Entry
@InProceedings{filmus_et_al:LIPIcs:2016:5823,
author = {Yuval Filmus and Guy Kindler and Elchanan Mossel and Karl Wimmer},
title = {{Invariance Principle on the Slice}},
booktitle = {31st Conference on Computational Complexity (CCC 2016)},
pages = {15:1--15:10},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-008-8},
ISSN = {1868-8969},
year = {2016},
volume = {50},
editor = {Ran Raz},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/5823},
URN = {urn:nbn:de:0030-drops-58236},
doi = {10.4230/LIPIcs.CCC.2016.15},
annote = {Keywords: analysis of boolean functions, invariance principle, Johnson association scheme, the slice}
}
Keywords: |
|
analysis of boolean functions, invariance principle, Johnson association scheme, the slice |
Collection: |
|
31st Conference on Computational Complexity (CCC 2016) |
Issue Date: |
|
2016 |
Date of publication: |
|
19.05.2016 |