A Linear Time Algorithm for Quantum 2-SAT

Authors Niel de Beaudrap, Sevag Gharibian



PDF
Thumbnail PDF

File

LIPIcs.CCC.2016.27.pdf
  • Filesize: 0.59 MB
  • 21 pages

Document Identifiers

Author Details

Niel de Beaudrap
Sevag Gharibian

Cite AsGet BibTex

Niel de Beaudrap and Sevag Gharibian. A Linear Time Algorithm for Quantum 2-SAT. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 27:1-27:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.CCC.2016.27

Abstract

The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete problem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the quantum setting, defining the problem "quantum k-SAT". He showed that quantum 2-SAT is also solvable in polynomial time on a classical computer, in particular in deterministic time O(n^4), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs in linear time, i.e. deterministic time O(n+m) for n and m the number of variables and clauses, respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC, 2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking) [SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL, 1979].
Keywords
  • quantum 2-SAT
  • transfer matrix
  • strongly connected components
  • limited backtracking
  • local Hamiltonian

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. I. Arad, M. Santha, A. Sundaram, and S. Zhang. Linear time algorithm for quantum 2SAT. arXiv:1508.06340, 2015. Google Scholar
  2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121-123, 1979. Google Scholar
  3. S. Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. Available at arXiv.org e-Print quant-ph/0602108v1, 2006. Google Scholar
  4. J. Chen, X. Chen, R. Duan, Z. Ji, and B. Zeng. No-go theorem for one-way quantum computing on naturally occurring two-level systems. Physical Review A, 83:050301(R), 2011. Google Scholar
  5. H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics. Springer, 1993. Google Scholar
  6. S. Cook. The complexity of theorem proving procedures. In Proceedings of the 3rd ACM Symposium on Theory of Computing (STOC 1972), pages 151-158, 1972. Google Scholar
  7. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201, 1960. Google Scholar
  8. N. de Beaudrap. Difficult instances of the counting problem for 2-quantum-sat are very atypical. In Proceeedings of TQC'14, pages 118-140, 2014. arXiv:1403.1588. Google Scholar
  9. N. de Beaudrap, T. J. Osborne, and J. Eisert. Ground states of unfrustrated spin hamiltonians satisfy an area law. New Journal of Physics, 12, 2010. arXiv:1009.3051. Google Scholar
  10. S. Even, A. Itai, and A. Shamir. On the complexity of the time table and multi-commodity flow problems. SIAM Journal on Computing, 5(4):691-703, 1976. Google Scholar
  11. M. Fürer. Faster integer multiplication. In Proceedings of the 39th ACM Symposium on the Theory of Computing (STOC 2007), pages 55-67, 2007. Google Scholar
  12. Oded Goldreich and David Zuckerman. Another proof that BPP ⊆ PH (and more). In Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, volume 6650 of Lecture Notes in Computer Science, pages 40-53. Springer Berlin Heidelberg, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22670-0_6.
  13. D. Gosset and D. Nagaj. Quantum 3-SAT is QMA1-complete. In Proceedings of the 54th IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 756-765, 2013. Google Scholar
  14. Z. Ji, Z. Wei, , and B. Zeng. Complete characterization of the ground space structure of two-body frustration-free hamiltonians for qubits. Physical Review A, 84, 2011. Google Scholar
  15. S. P. Jordan, H. Kobayashi, D. Nagaj, and H. Nishimura. Achieving perfect completeness in classical-witness quantum Merlin-Arthur proof systems. Quantum Information &Computation, 12(5 & 6):461-471, 2012. Google Scholar
  16. R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85-103. New York: Plenum, 1972. Google Scholar
  17. J. Kempe, A. Kitaev, and O. Regev. The complexity of the local Hamiltonian problem. SIAM Journal on Computing, 35(5):1070-1097, 2006. Google Scholar
  18. A. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2-30, 2003. Google Scholar
  19. A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation. American Mathematical Society, 2002. Google Scholar
  20. M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 13:15-20, 1967. Google Scholar
  21. C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi. Phase transitions and random quantum satisfiability. Quantum Information &Computation, 10:1-15, 2010. Google Scholar
  22. L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265-266, 1973. Google Scholar
  23. C. Papadimitriou. On selecting a satisfying truth assignment. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computing (FOCS 1991), pages 163-169, 1991. Google Scholar
  24. W. V. Quine. On cores and prime implicants of truth functions. The American Mathematical Monthly, 66(5):755-760, 1959. Google Scholar
  25. R. E. Tarjan. Depth fist search and linear graph algorithms. SIAM Journal on Computing, pages 146-160, 1972. Google Scholar
  26. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2003. Google Scholar
  27. S. Zachos and M. Furer. Probabalistic quantifiers vs. distrustful adversaries. In Foundations of Software Technology and Theoretical Computer Science, 7th Conference, pages 443-455, 1987. Volume 287 of Lecture Notes in Computer Science. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail