DagSemProc.05031.26.pdf
- Filesize: 149 kB
- 3 pages
The field of multi-stage stochastic programming provides a rich modelling framework to tackle a broad range of real-world decision problems. In order to numerically solve such programs - once they get reasonably large - the infinite-dimensional optimization problem has to be discretized. The stochastic optimization program generally consists of an optimization model and a stochastic model. In the multi-stage case the stochastic model is most commonly represented as a multi-variate stochastic process. The most common technique to calculate an useable discretization is to generate a scenario tree from the underlying stochastic process. In the first part of the talk we take a look at scenario optimization from the viewpoint of a decision taker, to provide rather non-technical insights into the problem. In the second part of the talk we examplify scenario tree generation by reviewing one specific algorithm based on multi-dimensional facility location applying backward stagewise clustering. An example from the area of financial engineering concludes the talk.
Feedback for Dagstuhl Publishing