A space-efficient approximation algorithm for the grammar-based compression problem, which requests for a given string to find a smallest context-free grammar deriving the string, is presented. For the input length n and an optimum CFG size g, the algorithm consumes only O(g log g) space and O(n log^n) time to achieve O((log^n) log n) approximation ratio to the optimum compression, where log^n is the maximum number of logarithms satisfying log log · · · logn > 1. This ratio is thus regarded to almost O(log n), which is the currently best approximation ratio. While g depends on the string, it is known that g =(log n) and g=O(n/log_k n) for strings from a k-letter alphabet [12].
@InProceedings{sakamoto:DagSemProc.08261.4, author = {Sakamoto, Hiroshi}, title = {{A Space-Saving Approximation Algorithm for Grammar-Based Compression}}, booktitle = {Structure-Based Compression of Complex Massive Data}, pages = {1--14}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2008}, volume = {8261}, editor = {Stefan B\"{o}ttcher and Markus Lohrey and Sebastian Maneth and Wojcieh Rytter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08261.4}, URN = {urn:nbn:de:0030-drops-16937}, doi = {10.4230/DagSemProc.08261.4}, annote = {Keywords: Grammar based compression, space efficient approximation} }
Feedback for Dagstuhl Publishing