The {\sc Multicut In Trees} problem consists in deciding, given a tree, a set of requests (i.e. paths in the tree) and an integer $k$, whether there exists a set of $k$ edges cutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer (2005). They also provided an exponential kernel. They asked whether this problem has a polynomial kernel. This question was also raised by Fellows (2006). We show that {\sc Multicut In Trees} has a polynomial kernel.
@InProceedings{bousquet_et_al:LIPIcs.STACS.2009.1824, author = {Bousquet, Nicolas and Daligault, Jean and Thomasse, Stephan and Yeo, Anders}, title = {{A Polynomial Kernel for Multicut in Trees}}, booktitle = {26th International Symposium on Theoretical Aspects of Computer Science}, pages = {183--194}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-09-5}, ISSN = {1868-8969}, year = {2009}, volume = {3}, editor = {Albers, Susanne and Marion, Jean-Yves}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2009.1824}, URN = {urn:nbn:de:0030-drops-18247}, doi = {10.4230/LIPIcs.STACS.2009.1824}, annote = {Keywords: } }
Feedback for Dagstuhl Publishing