OASIcs.CCA.2009.2267.pdf
- Filesize: 392 kB
- 12 pages
We exhibit a polynomial time computable plane curve ${\bf \Gamma}$ that has finite length, does not intersect itself, and is smooth except at one endpoint, but has the following property. For every computable parametrization $f$ of ${\bf\Gamma}$ and every positive integer $m$, there is some positive-length subcurve of ${\bf\Gamma}$ that $f$ retraces at least $m$ times. In contrast, every computable curve of finite length that does not intersect itself has a constant-speed (hence non-retracing) parametrization that is computable relative to the halting problem.
Feedback for Dagstuhl Publishing