The First-Order Theory of Ground Tree Rewrite Graphs

Authors Stefan Göller, Markus Lohrey



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2011.276.pdf
  • Filesize: 0.51 MB
  • 12 pages

Document Identifiers

Author Details

Stefan Göller
Markus Lohrey

Cite As Get BibTex

Stefan Göller and Markus Lohrey. The First-Order Theory of Ground Tree Rewrite Graphs. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 276-287, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011) https://doi.org/10.4230/LIPIcs.FSTTCS.2011.276

Abstract

We prove that the complexity of the uniform first-order theory 
of ground tree rewrite graphs is in ATIME(2^{2^{poly(n)}},O(n).     Providing a matching lower bound, we show that there is some
fixed ground tree rewrite graph whose first-order theory is hard
for ATIME(2^{2^{poly(n)}},poly(n)) with respect to logspace reductions. Finally, we prove that there exists a fixed ground tree rewrite graph together with a single unary predicate in form of a regular tree language such that the resulting structure has a non-elementary first-order theory.

Subject Classification

Keywords
  • ground tree rewriting systems
  • first-order theories
  • complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail