Finite automata on infinite words (omega-automata) proved to be a powerful weapon for modeling and reasoning infinite behaviors of reactive systems. Complementation of omega-automata is crucial in many of these applications. But the problem is non-trivial; even after extensive study during the past two decades, we still have an important type of omega-automata, namely Streett automata, for which the gap between the current best lower bound 2^(Omega(n lg nk)) and upper bound 2^(O (nk lg nk)) is substantial, for the Streett index size k can be exponential in the number of states n. In a previous work we showed a construction for complementing Streett automata with the upper bound 2^(O(n lg n+nk lg k)) for k = O(n) and 2^(O(n^2 lg n)) for k = omega(n). In this paper we establish a matching lower bound 2^(Omega (n lg n+nk lg k)) for k = O(n) and 2^(Omega (n^2 lg n)) for k = omega(n), and therefore showing that the construction is asymptotically optimal with respect to the ^(Theta(.)) notation.
@InProceedings{cai_et_al:LIPIcs.FSTTCS.2011.339, author = {Cai, Yang and Zhang, Ting}, title = {{A Tight Lower Bound for Streett Complementation}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)}, pages = {339--350}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-34-7}, ISSN = {1868-8969}, year = {2011}, volume = {13}, editor = {Chakraborty, Supratik and Kumar, Amit}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.339}, URN = {urn:nbn:de:0030-drops-33474}, doi = {10.4230/LIPIcs.FSTTCS.2011.339}, annote = {Keywords: omega-automata, Streett automata, complementation, lower bounds} }
Feedback for Dagstuhl Publishing