Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

Author Paul Bonsma



PDF
Thumbnail PDF

File

LIPIcs.STACS.2012.531.pdf
  • Filesize: 479 kB
  • 12 pages

Document Identifiers

Author Details

Paul Bonsma

Cite As Get BibTex

Paul Bonsma. Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 531-542, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012) https://doi.org/10.4230/LIPIcs.STACS.2012.531

Abstract

The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2^{O(k)} O(n).
We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. In addition, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (JGAA '99).

Subject Classification

Keywords
  • Analysis of algorithms
  • parameterized algorithms
  • graphs on surfaces
  • subgraph isomorphism
  • dynamic programming
  • branch decompositions
  • counting probl

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail