OASIcs.ICCSW.2012.156.pdf
- Filesize: 0.5 MB
- 7 pages
The efficient choice of a preprocessing level can reduce the search time of a constraint solver to find a solution to a constraint problem. Currently the parameters in constraint solver are often picked by hand by experts in the field. Genetic algorithms are a robust machine learning technology for problem optimization such as function optimization. Self-learning Genetic Algorithm are a strategy which suggests or predicts the suitable preprocessing method for large scale problems by learning from the same class of small scale problems. In this paper Self-learning Genetic Algorithms are used to create an automatic preprocessing selection mechanism for solving various constraint problems. The experiments in the paper are a proof of concept for the idea of combining genetic algorithm self-learning ability with constraint programming to aid in the parameter selection issue.
Feedback for Dagstuhl Publishing