LIPIcs.STACS.2013.317.pdf
- Filesize: 0.7 MB
- 12 pages
We show that the satisfiability problem for the two-variable first-order logic, FO^2, over transitive structures when only one relation is required to be transitive, is decidable. The result is optimal, as FO^2 over structures with two transitive relations, or with one transitive and one equivalence relation, are known to be undecidable, so in fact, our result completes the classification of FO^2-logics over transitive structures with respect to decidability. We show that the satisfiability problem is in 2-NExpTime. Decidability of the finite satisfiability problem remains open.
Feedback for Dagstuhl Publishing