A characterization of the Taylor expansion of lambda-terms

Authors Pierre Boudes, Fanny He, Michele Pagani



PDF
Thumbnail PDF

File

LIPIcs.CSL.2013.101.pdf
  • Filesize: 0.54 MB
  • 15 pages

Document Identifiers

Author Details

Pierre Boudes
Fanny He
Michele Pagani

Cite As Get BibTex

Pierre Boudes, Fanny He, and Michele Pagani. A characterization of the Taylor expansion of lambda-terms. In Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 23, pp. 101-115, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013) https://doi.org/10.4230/LIPIcs.CSL.2013.101

Abstract

The Taylor expansion of lambda-terms, as introduced by Ehrhard and Regnier, expresses a lambda-term as a series of multi-linear terms, called simple terms, which capture bounded computations. Normal forms of Taylor expansions give a notion of infinitary normal forms, refining the notion of Böhm trees in a quantitative setting.
We give the algebraic conditions over a set of normal simple terms which characterize the property of being the normal form of the Taylor expansion of a lambda-term. From this full completeness result, we give further conditions which semantically describe normalizable and total lambda-terms.

Subject Classification

Keywords
  • Lambda-Calculus
  • Böhm trees
  • Differential Lambda-Calculus
  • Linear Logic

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail