LIPIcs.TQC.2013.126.pdf
- Filesize: 0.53 MB
- 20 pages
While efficient algorithms are known for solving many important problems related to groups, no efficient algorithm is known for determining whether two arbitrary groups are isomorphic. The particular case of 2-nilpotent groups, a special type of central extension, is widely believed to contain the essential hard cases. However, looking specifically at central extensions, the natural formulation of being "the same" is not isomorphism but rather "equivalence," which requires an isomorphism to preserves the structure of the extension. In this paper, we show that equivalence of central extensions can be computed efficiently on a classical computer when the groups are small enough to be given by their multiplication tables. However, in the model of black box groups, which allows the groups to be much larger, we show that equivalence can be computed efficiently on a quantum computer but not a classical one (under common complexity assumptions). Our quantum algorithm demonstrates a new application of the hidden subgroup problem for general abelian groups.
Feedback for Dagstuhl Publishing