LIPIcs.TQC.2013.235.pdf
- Filesize: 0.6 MB
- 9 pages
Magic state distillation is a fundamental technique for realizing fault-tolerant universal quantum computing, and produces high-fidelity Clifford eigenstates, called magic states, which can be used to implement the non-Clifford pi/8 gate. We propose an efficient protocol for distilling other non-stabilizer states that requires only Clifford operations, measurement, and magic states. One critical application of our protocol is efficiently and fault tolerantly implementing arbitrary, non-Clifford, single-qubit rotations in average constant online circuit depth and polylogarithmic (in precision) offline resource cost, resulting in significant improvements over state-of-the-art decomposition techniques. Finally, we show that our protocol is robust to noise in the resource states.
Feedback for Dagstuhl Publishing