LIPIcs.FSTTCS.2013.413.pdf
- Filesize: 450 kB
- 12 pages
We characterize the infinite words determined by one-way stack automata. An infinite language L determines an infinite word alpha if every string in L is a prefix of alpha. If L is regular or context-free, it is known that alpha must be ultimately periodic. We extend this result to the class of languages recognized by one-way nondeterministic checking stack automata (1-NCSA). We then consider stronger classes of stack automata and show that they determine a class of infinite words which we call multilinear. We show that every multilinear word can be written in a form which is amenable to parsing. Finally, we consider the class of one-way multihead deterministic finite automata (1:multi-DFA). We show that every multilinear word can be determined by some 1:multi-DFA, but that there exist infinite words determined by 1:multi-DFA which are not multilinear.
Feedback for Dagstuhl Publishing