LIPIcs.FSTTCS.2014.351.pdf
- Filesize: 471 kB
- 13 pages
We study mixed-strategy Nash equilibria in multiplayer deterministic concurrent games played on graphs, with terminal-reward payoffs (that is, absorbing states with a value for each player). We show undecidability of the existence of a constrained Nash equilibrium (the constraint requiring that one player should have maximal payoff), with only three players and 0/1-rewards (i.e., reachability objectives). This has to be compared with the undecidability result by Ummels and Wojtczak for turn-based games which requires 14 players and general rewards. Our proof has various interesting consequences: (i) the undecidability of the existence of a Nash equilibrium with a constraint on the social welfare; (ii) the undecidability of the existence of an (unconstrained) Nash equilibrium in concurrent games with terminal-reward payoffs.
Feedback for Dagstuhl Publishing