LIPIcs.FSTTCS.2014.597.pdf
- Filesize: 476 kB
- 13 pages
For a graph G(V,E) and a vertex s in V, a weighting scheme (w : E -> N) is called a min-unique (resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of minimum (resp. maximum) weight from s to v. Instead, if the number of paths of minimum (resp. maximum) weight is bounded by n^c for some constant c, then the weighting scheme is called a min-poly (resp. max-poly) weighting scheme. In this paper, we propose an unambiguous non-deterministic log-space (UL) algorithm for the problem of testing reachability in layered directed acyclic graphs (DAGs) augmented with a min-poly weighting scheme. This improves the result due to Reinhardt and Allender [Reinhardt/Allender, SIAM J. Comp., 2000] where a UL algorithm was given for the case when the weighting scheme is min-unique. Our main technique is a triple inductive counting, which generalizes the techniques of [Immermann, Siam J. Comp.,1988; Szelepcsényi, Acta Inf.,1988] and [Reinhardt/Allender, SIAM J. Comp., 2000], combined with a hashing technique due to [Fredman et al.,J. ACM, 1984] (also used in [Garvin et al., Comp. Compl.,2014]). We combine this with a complementary unambiguous verification method, to give the desired UL algorithm. At the other end of the spectrum, we propose a UL algorithm for testing reachability in layered DAGs augmented with max-poly weighting schemes. To achieve this, we first reduce reachability in DAGs to the longest path problem for DAGs with a unique source, such that the reduction also preserves the max-poly property of the graph. Using our techniques, we generalize the double inductive counting method in [Limaye et al., CATS, 2009] where UL algorithms were given for the longest path problem on DAGs with a unique sink and augmented with a max-unique weighting scheme. An important consequence of our results is that, to show NL = UL, it suffices to design log-space computable min-poly (or max-poly) weighting schemes for DAGs.
Feedback for Dagstuhl Publishing