LIPIcs.CSL.2015.616.pdf
- Filesize: 425 kB
- 15 pages
We consider two-variable first-order logic on finite words with a fixed number of quantifier alternations. We show that all languages with a neutral letter definable using the order and finite-degree predicates are also definable with the order predicate only. From this result we derive the separation of the alternation hierarchy of two-variable logic on this signature. Replacing finite-degree by arbitrary numerical predicates in the statement would entail a long standing conjecture on the circuit complexity of the addition function. Thus, this result can be viewed as a uniform version of this circuit lower bound.
Feedback for Dagstuhl Publishing