Coalgebraic Infinite Traces and Kleisli Simulations

Authors Natsuki Urabe, Ichiro Hasuo



PDF
Thumbnail PDF

File

LIPIcs.CALCO.2015.320.pdf
  • Filesize: 0.53 MB
  • 16 pages

Document Identifiers

Author Details

Natsuki Urabe
Ichiro Hasuo

Cite As Get BibTex

Natsuki Urabe and Ichiro Hasuo. Coalgebraic Infinite Traces and Kleisli Simulations. In 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 35, pp. 320-335, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015) https://doi.org/10.4230/LIPIcs.CALCO.2015.320

Abstract

Kleisli simulation is a categorical notion introduced by Hasuo to verify finite trace inclusion. They allow us to give definitions of forward and backward simulation for various types of systems. A generic categorical theory behind Kleisli simulation has been developed and it guarantees the soundness of those simulations wrt. finite trace semantics. Moreover, those simulations can be aided by forward partial execution (FPE) - a categorical transformation of systems previously introduced by the authors.

In this paper, we give Kleisli simulation a theoretical foundation that assures its soundness also wrt. infinite trace. There, following Jacobs' work, infinite trace semantics is characterized as the "largest homomorphism." It turns out that soundness of forward simulations is rather straightforward; that of backward simulation holds too, although it requires certain additional conditions and its proof is more involved. We also show that FPE can be successfully employed in the infinite trace setting to enhance the applicability of Kleisli simulations as witnesses of trace inclusion. Our framework is parameterized in the monad for branching as well as in the functor for linear-time behaviors; for the former we use the powerset monad (for nondeterminism) as well as the sub-Giry monad (for probability).

Subject Classification

Keywords
  • category theory
  • coalgebra
  • simulation
  • verification
  • trace semantics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail