Practical Algorithms for Linear Boolean-width

Authors Chiel B. ten Brinke, Frank J. P. van Houten, Hans L. Bodlaender



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2015.187.pdf
  • Filesize: 0.59 MB
  • 12 pages

Document Identifiers

Author Details

Chiel B. ten Brinke
Frank J. P. van Houten
Hans L. Bodlaender

Cite AsGet BibTex

Chiel B. ten Brinke, Frank J. P. van Houten, and Hans L. Bodlaender. Practical Algorithms for Linear Boolean-width. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 187-198, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.IPEC.2015.187

Abstract

In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the generated decompositions. We also evaluated dynamic programming algorithms on linear boolean decompositions for several vertex subset problems. This evaluation shows that such algorithms are often much faster (up to several orders of magnitude) compared to theoretical worst case bounds.
Keywords
  • graph decomposition
  • boolean-width
  • heuristics
  • exact algorithms
  • vertex subset problems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algorithmic applications. Theoretical Computer Science, 511:54-65, 2013. Exact and Parameterized Computation. Google Scholar
  2. B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs. In IWPEC 2009, volume 5917 of LNCS, pages 61-74. Springer, 2009. Google Scholar
  3. B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer Science, 511:66-76, 2013. Google Scholar
  4. P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae 6: 290–297, 1959. Google Scholar
  5. E. M. Hvidevold, S. Sharmin, J. A. Telle, and M. Vatshelle. Finding good decompositions for dynamic programming on dense graphs. In IWPEC 2012, volume 7112 of LNCS, pages 219-231. Springer, 2012. Google Scholar
  6. K. H. Kim. Boolean Matrix Theory and its Applications. Marcel Dekker, 1982. Google Scholar
  7. F. Manne and S. Sharmin. Efficient counting of maximal independent sets in sparse graphs. In Experimental Algorithms, volume 7933 of LNCS, pages 103-114. Springer, 2013. Google Scholar
  8. Y. Rabinovich, J. A. Telle, and M. Vatshelle. Upper bounds on boolean-width with applications to exact algorithms. In IWPEC 2013, volume 8246 of LNCS, pages 308-320. Springer, 2013. Google Scholar
  9. N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39-61, 1983. Google Scholar
  10. S. Sharmin. Practical Aspects of the Graph Parameter Boolean-width. PhD thesis, University of Bergen, Norway, 2014. Google Scholar
  11. J. A. Telle. Complexity of domination-type problems in graphs. Nordic Journal of Computing, 1(1):157-171, 1994. Google Scholar
  12. Ch. B. Ten Brinke, F. J. P. van Houten, and H. L. Bodlaender. Practical Algorithms for Linear Boolean-width. ArXiv e-prints ArXiV:1509.07687, 2015. Google Scholar
  13. Treewidthlib. http://www.staff.science.uu.nl/∼bodla101/treewidthlib/. A benchmark for algorithms for treewidth and related graph problems. Google Scholar
  14. F. J. P. van Houten. Experimental research and algorithmic improvements involving the graph parameter boolean-width. Master’s thesis, Utrecht University, The Netherlands, 2015. Google Scholar
  15. J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on tree decompositions using generalised fast subset convolution. In Algorithms - ESA 2009, volume 5757 of LNCS, pages 566-577. Springer, 2009. Google Scholar
  16. M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway, 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail